Symplectic geometry and Chern-Simons gauge theory

辛几何和陈-西蒙斯规范理论

基本信息

  • 批准号:
    RGPIN-2016-05635
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research program is in symplectic geometry. It involves invariants in cohomology and equivariant cohomology. In some cases it also involves equivariant K-theory. Objects of fundamental importance are symplectic quotients and hyperkaehler quotients. One fundamental question is Kirwan surjectivity, in other words whether the natural map from the equivariant cohomology of a symplectic manifold to the ordinary cohomology of the symplectic quotient is surjective. One object studied is the based loop group, an infinite-dimensional analogue of a coadjoint orbit which arises in gauge theory. My research involves conjugation spaces, which are symplectic manifolds equipped with an antisymplectic involution and a Hamiltonian torus action compatible with the involution.
我的研究项目是辛几何。它涉及上同调中的不变量和等变上同调。 在某些情况下,它还涉及等变 K 理论。 最重要的对象是辛商和超凯勒商。一个基本问题是基尔万满射性,在 换句话说,是否从辛流形的等变上同调到辛流形的普通上同调的自然映射 商是满射的。 研究的一个对象是基环群,它是共交轨道的无限维模拟, 出现在规范理论中。我的研究涉及共轭空间,它是配备有反辛对合的辛流形,并且 与对合兼容的哈密顿环面作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey, Lisa其他文献

Jeffrey, Lisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey, Lisa', 18)}}的其他基金

Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

奇异黎曼叶状结构的微分几何学研究
  • 批准号:
    12371048
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于代数几何学的统计学习理论研究
  • 批准号:
    12171382
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非欧几何学的若干历史问题研究
  • 批准号:
    12161086
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了