Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids

多端直流电网实时数字仿真与控制

基本信息

  • 批准号:
    RGPIN-2017-03733
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Real-time digital simulation mimics a physical system to reproduce the system's true behavior under simulated stresses applied under controlled conditions in a laboratory. In the context of electrical power grids, the applications of real-time digital simulation has grown from its initial function of testing prior to commissioning of control and protection systems (over 30 years ago) to encompass all manner of studies in the generation, transmission, distribution, and end use sectors of electrical energy. High voltage direct current (HVDC) technology is the conduit for bulk power transfer from large conventional generation to distant load centers, between interconnected asynchronous alternating current (AC) grids, and today it is also the key enabler for the massive influx of far-flung renewable generation into AC grids. Advances in power electronic topologies, control and protection schemes are leading the future growth of multi-terminal direct current (MTDC) grids worldwide. This research program focuses on the fundamental conception and development of high-fidelity real-time digital models and control algorithms for the safe and reliable operation of MTDC grids. A new class of device-level electromagnetic transient models will be developed for MTDC grid components based on nonlinear system identification theory. These so-called Wiener-Hammerstein models will be accurate, efficient, and modular serving as building blocks for the construction of hierarchical large-scale real-time simulation of MTDC grids in the hardware-in-the-loop (HIL) configuration on field programmable gate array (FPGA) and System-on-Chip (SoC) architectures. Novel real-time parameter estimation, adaptive control algorithms, and protection strategies will be developed alongside for precise tracking of command inputs under both normal and abnormal DC grid conditions and fast fault isolation. This research will significantly advance the state-of-the-art in real-time HIL simulation for MTDC grid systems by providing unprecedented modeling detail and simulation accuracy. The accurate parallel models and computational algorithms will help reduce the development and testing costs for complex MTDC grids by allowing their analysis and optimization at early stages. A high-fidelity HIL simulation can offer significant benefits in terms of rapidly testing novel control strategies, power converter topologies, circuit breaker configurations, protection strategies for efficiency and performance optimization of the whole system. This research program will train 3 Ph.D. and 3 M.Sc. students, and there will also be ample opportunities for undergraduate research interns. The research results will be disseminated in leading journals and conferences. The main beneficiaries of this research will be manufacturers of real-time digital simulators in Canada, and Canadian electrical power utilities.
实时数字仿真模拟物理系统,以重现系统在实验室受控条件下施加的模拟应力下的真实行为。在电网背景下,实时数字仿真的应用已经从最初的控制和保护系统调试前的测试功能(30 多年前)发展到涵盖发电、输电、电能的分配和最终使用部门。高压直流 (HVDC) 技术是在互连的异步交流 (AC) 电网之间从大型传统发电设备向遥远的负荷中心进行大容量电力传输的管道,如今,它也是远程电力大量涌入的关键推动因素。可再生能源发电并入交流电网。电力电子拓扑、控制和保护方案的进步正在引领全球多端直流(MTDC)电网的未来发展。 该研究项目重点关注高保真实时数字模型和控制算法的基本概念和开发,以实现 MTDC 电网的安全可靠运行。基于非线性系统辨识理论,将为 MTDC 电网组件开发一类新型设备级电磁暂态模型。这些所谓的 Wiener-Hammerstein 模型将是准确、高效和模块化的,可作为构建块在现场硬件在环 (HIL) 配置中构建 MTDC 电网的分层大规模实时仿真。可编程门阵列 (FPGA) 和片上系统 (SoC) 架构。同时还将开发新颖的实时参数估计、自适应控制算法和保护策略,以便在正常和异常直流电网条件下精确跟踪命令输入以及快速故障隔离。 这项研究将通过提供前所未有的建模细节和仿真精度,显着推进 MTDC 电网系统实时 HIL 仿真的最先进水平。准确的并行模型和计算算法将允许在早期阶段进行分析和优化,从而有助于降低复杂 MTDC 网格的开发和测试成本。高保真 HIL 仿真可以在快速测试新颖的控制策略、电源转换器拓扑、断路器配置、整个系统的效率和性能优化的保护策略方面提供显着的优势。该研究项目将培养3名博士。和 3 个硕士学位学生,并且本科生研究实习生也将有充足的机会。研究结果将在领先期刊和会议上传播。这项研究的主要受益者将是加拿大的实时数字模拟器制造商和加拿大电力公司。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dinavahi, Venkata其他文献

Real-Time Hierarchical Neural Network Based Fault Detection and Isolation for High-Speed Railway System Under Hybrid AC/DC Grid
  • DOI:
    10.1109/tpwrd.2020.3022750
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Liu, Qin;Liang, Tian;Dinavahi, Venkata
  • 通讯作者:
    Dinavahi, Venkata
Robust Forecasting-Aided State Estimation for Power System Against Uncertainties
针对不确定性的电力系统鲁棒预测辅助状态估计
  • DOI:
    10.1109/tpwrs.2019.2936141
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Wang, Yi;Sun, Yonghui;Dinavahi, Venkata
  • 通讯作者:
    Dinavahi, Venkata
Multi-group particle swarm optimisation for transmission expansion planning solution based on LU decomposition
FPGA-Based Real-Time Wrench Model of Direct Current Driven Magnetic Levitation Actuator
基于FPGA的直流驱动磁悬浮执行器实时扳手模型
Direct Interval Forecast of Uncertain Wind Power Based on Recurrent Neural Networks
  • DOI:
    10.1109/tste.2017.2774195
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Shi, Zhichao;Liang, Hao;Dinavahi, Venkata
  • 通讯作者:
    Dinavahi, Venkata

Dinavahi, Venkata的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dinavahi, Venkata', 18)}}的其他基金

Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    RGPIN-2017-03733
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
  • 批准号:
    515592-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    RGPIN-2017-03733
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    507961-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    RGPIN-2017-03733
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
  • 批准号:
    515592-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    507961-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
  • 批准号:
    515592-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    507961-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Real-Time Digital Simulation and Control of Multi-Terminal Direct Current Grids
多端直流电网实时数字仿真与控制
  • 批准号:
    RGPIN-2017-03733
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

应用于辐射探测的低噪声、高精度、多通路时间甄别及数字化专用集成电路设计方法研究
  • 批准号:
    12375191
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
硅基低功耗全数字锁相环的无校准相位噪声优化技术研究
  • 批准号:
    61904144
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于数字带宽交替的40GSPS超宽带数据采集研究
  • 批准号:
    61801092
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
具有时变统计数字系数的离散时间系统的H2/H无穷控制及其在通信网络中的应用
  • 批准号:
    61873144
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
基于环形进位链结构的高性能Vernier型时间数字转换方法研究
  • 批准号:
    11705091
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Re4Rail: AI and digital twin-based automated technology to real-time repair, reuse, recycle and repurpose railway granular media
Re4Rail:基于人工智能和数字孪生的自动化技术,可实时修复、再利用、回收和重新利用铁路颗粒介质
  • 批准号:
    EP/Y015401/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Fellowship
Centre for Doctoral Training in Real-Time Digital Water-Based Systems for Environmental Health Protection (RED-ALERT CDT)
环境健康保护实时数字水基系统博士培训中心(RED-ALERT CDT)
  • 批准号:
    NE/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Training Grant
Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
  • 批准号:
    2320619
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Real-time digital optimisation and decision making for energy and transport systems
能源和运输系统的实时数字优化和决策
  • 批准号:
    EP/Y004930/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
Real-time digital optimisation and decision making for energy and transport systems
能源和运输系统的实时数字优化和决策
  • 批准号:
    EP/Y004841/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了