Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
基本信息
- 批准号:RGPIN-2016-05842
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many fundamental processes in nature occur over ultrafast time scales measured in picoseconds, or trillionths of a second. For example, in semiconductor materials like those used in computer chips and digital cameras, electrons can move freely in one direction for about a tenth of a picosecond before getting bumped in a different direction by small vibrations of the atoms. This scattering of electrons over such short time scales affects the flow of electrical current in materials. A pure semiconductor can actually be a good insulator, but absorption of light can generate both negative (electron) and positive (“hole”) charge carriers that are then free to move, making the material conducting. This phenomenon, which is called photoconductivity, forms the basis of most light sensing technologies. The photoexcited electrons and holes can move around inside the material for up to a few nanoseconds before becoming trapped at defect sites or emitting light as they recombine. In semiconductor nanomaterials, the lifetimes of photoexcited charge carriers can be tens of picoseconds, depending on the nanoscale morphology of the material.
Understanding ultrafast processes in materials, therefore, provides valuable insight into the nature of materials. Ultrafast laser sources, which generate very short pulses of light less than a picosecond in duration, are the only experimental tool that can directly probe ultrafast dynamics in materials. In our lab, we use ultrafast laser sources to generate picosecond-duration electromagnetic transients called terahertz (THz) pulses that are ideally suited for probing ultrafast dynamics of materials. One of the goals of the proposed research program is to use very intense THz pulses to explore the nonlinear transport dynamics of photoexcited electrons and holes in bulk semiconductors and semiconductor nanomaterials. The large peak electric fields of intense THz pulses can accelerate charge carriers to very high energies before scattering, providing unique insight into charge carrier generation, transport and recombination in materials. However, directly probing ultrafast processes in materials on the nanoscale, which would provide completely new insight into how morphology and local environments affect carrier dynamics, has proven to be challenging. Recently, we developed a new technique called THz scanning tunneling microscopy (THz-STM) that allows direct imaging of ultrafast dynamics on surfaces with nanometer spatial resolution and sub-picosecond time resolution. The proposed research program will use THz-STM for imaging ultrafast dynamics in materials and nanostructures with atomic resolution, and will also explore the nature of THz-pulse-induced transient tunnel currents. Indeed, ultrafast imaging on the nanoscale would have an enormous impact on the development of new materials for energy conversion and nanoscale device technologies.
自然界中的许多基本过程都发生在以皮秒或万亿分之一秒为单位的超快时间尺度内,例如,在计算机芯片和数码相机中使用的半导体材料中,电子可以在一个方向上自由移动约十分之一皮秒。在如此短的时间尺度内电子向不同方向碰撞之前,纯半导体实际上可以是良好的绝缘体,但光的吸收可以产生两者。负(电子)和正(“空穴”)电荷载流子可以自由移动,使材料导电,这种现象称为光电导,形成了大多数光传感技术的基础。光激发的电子和空穴可以四处移动。在半导体纳米材料中,光激发电荷载流子的寿命可达数十皮秒,具体取决于纳米级形态。的材料。
因此,了解材料中的超快过程可以提供对材料性质的宝贵见解。超快激光源产生持续时间小于皮秒的非常短的光脉冲,是唯一可以直接探测材料中超快动力学的实验工具。在我们的实验室中,我们使用超快激光源来产生皮秒持续时间的电磁瞬变,称为太赫兹(THz)脉冲,该脉冲非常适合探测材料的超快动力学,拟议研究计划的目标之一是使用。非常强的太赫兹脉冲,用于探索块状半导体和半导体纳米材料中光激发电子和空穴的非线性输运动力学。强太赫兹脉冲的大峰值电场可以在散射之前将载流子加速到非常高的能量,从而提供对载流子生成的独特见解,然而,在纳米尺度上直接探测材料中的超快过程,这将为了解形态和局部环境如何影响载流子动力学提供全新的见解,这已被证明是具有挑战性的,最近,我们开发了一种称为“纳米尺度”的新技术。太赫兹扫描隧道显微镜(THz-STM)允许以纳米空间分辨率和亚皮秒时间分辨率对表面超快动力学进行直接成像。拟议的研究计划将使用太赫兹-STM以原子分辨率对材料和纳米结构中的超快动力学进行成像。还将探索太赫兹脉冲引起的瞬态隧道电流的性质。事实上,纳米级超快成像将对能量转换新材料和纳米级器件技术的开发产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hegmann, Frank其他文献
Hegmann, Frank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hegmann, Frank', 18)}}的其他基金
Ultrafast nanoscale quantum dynamics of materials
材料的超快纳米级量子动力学
- 批准号:
RGPIN-2022-04361 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast nanoscale quantum dynamics of materials
材料的超快纳米级量子动力学
- 批准号:
RGPIN-2022-04361 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
固体强场辐射中布洛赫电子超快动力学研究
- 批准号:11904341
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于圆偏振红外和太赫兹脉冲双泵浦的自旋非热双光磁调控研究
- 批准号:61805256
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
皮秒太赫兹脉冲在GaAs及其低维结构半导体材料中的光生电流动力学研究
- 批准号:11774354
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
类石墨烯层状二维材料及其异质结构的超快磁光光谱研究
- 批准号:11704012
- 批准年份:2017
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
新型非线性光学晶体中相干光学声子的超快太赫兹光谱研究
- 批准号:11704407
- 批准年份:2017
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultrafast terahertz measurements of quantum dynamics in matter
物质量子动力学的超快太赫兹测量
- 批准号:
RGPIN-2022-03412 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz measurements of quantum dynamics in matter
物质量子动力学的超快太赫兹测量
- 批准号:
RGPIN-2022-03412 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast terahertz dynamics of materials
材料的超快太赫兹动力学
- 批准号:
RGPIN-2016-05842 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Exploring ultrafast non-equilibrium superconductivity dynamics in Bi-2212 single crystals with terahertz scanning tunneling microscopy
利用太赫兹扫描隧道显微镜探索 Bi-2212 单晶中的超快非平衡超导动力学
- 批准号:
554112-2020 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's