Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
基本信息
- 批准号:RGPIN-2016-04635
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to develop the methods and processes that enable the development and deployment of autonomous robots in all environments wherein robots can contribute to safety and productivity, especially in time-delayed environments. The time delay comes from several different sources as sensors, computation, actuators, communication and interactions among different parts of the system, especially robot to robot (or agent to agent) interaction. We are primarily interested in the case of on-line real-time learning applied to multi-robot environments in which emergence of individual and group behaviours in collectives of robots arise and in which time-delays could lead to different, or even unstable, behaviours, individually or collectively.
For the purposes of this application, individual behaviour is defined by how a single robot chooses to act (in terms of policies or strategies) given that it perceives the environment to be at a given state. The way the robot perceives the state of the environment is inherently imprecise, limited, noisy and potentially time-delayed. Also, the presence of other robots change the environment in such a way that the relationship with another single robot may affect the decision taken at any given time. Group behaviour is how the collective may act as a group when faced to conflicting roles and tasks. Group behaviours are linked to individual behaviours in a manner that is not presently completely known.
This research intends to apply learning algorithms based on reinforcement learning techniques (and its derivatives) in order to produce on-line real-time capable robots that can be applied to actual applications such as the location and disruption of improvised explosive devices (IED), object identification, mine and tunnel navigation, aerial surveillance, underwater mapping, navigation in crowded environments and so on.
The representation of the environment is to be done by using learning algorithms as well as decentralized control based on Model Predictive Control (MPC), especially when considering the interactions among agents (either cooperative when the agents have a common goal or objective or competitive when the agents do not have an explicit representation of the goal of the others in nature). The learning will be applied to two different layers: (i) the individual execution of a task; and (ii) the interaction among agents.
The algorithms developed will be tested in real robotic platforms that are compliant with the Robot Operating System (ROS). These algorithms are needed to run in real-time with the noisy and delayed sensor readings. Furthermore, stochastic delays in the processing of the control algorithms are possible. The platforms are composed of ground and aerial vehicles and the experimental facility is already available at the Royal Military College of Canada (RMCC).
这项研究旨在开发方法和流程,使自主机器人能够在所有环境中开发和部署,其中机器人可以为安全性和生产力做出贡献,特别是在延时环境中。时间延迟来自多个不同的来源,如传感器、计算、执行器、系统不同部分之间的通信和交互,特别是机器人与机器人(或代理与代理)的交互。我们主要感兴趣的是应用于多机器人环境的在线实时学习的情况,其中机器人集体中出现个体和群体行为,并且时间延迟可能导致不同的甚至不稳定的行为,单独或集体。
就本应用程序而言,个体行为是由单个机器人在感知环境处于给定状态时如何选择行动(就策略或策略而言)来定义的。机器人感知环境状态的方式本质上是不精确的、有限的、嘈杂的并且可能存在时间延迟。此外,其他机器人的存在会改变环境,以至于与另一个机器人的关系可能会影响在任何给定时间做出的决定。群体行为是指当面临冲突的角色和任务时,集体如何作为一个群体行事。群体行为与个体行为之间的联系目前尚不完全清楚。
本研究旨在应用基于强化学习技术(及其衍生物)的学习算法,以生产能够应用于实际应用的在线实时机器人,例如简易爆炸装置(IED)的定位和破坏,物体识别、矿山和隧道导航、空中监视、水下测绘、拥挤环境中的导航等。
环境的表示将通过使用学习算法以及基于模型预测控制(MPC)的分散控制来完成,特别是在考虑智能体之间的交互时(当智能体有共同目标时是合作,或者当智能体有共同目标时是竞争性)代理在本质上没有明确表示其他人的目标)。学习将应用于两个不同的层面:(i)任务的单独执行; (ii) 主体之间的相互作用。
开发的算法将在符合机器人操作系统(ROS)的真实机器人平台上进行测试。这些算法需要与噪声和延迟的传感器读数实时运行。此外,控制算法处理中的随机延迟是可能的。该平台由地面和空中车辆组成,加拿大皇家军事学院(RMCC)已提供实验设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Givigi, Sidney其他文献
Givigi, Sidney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Givigi, Sidney', 18)}}的其他基金
Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
- 批准号:
RGPIN-2022-04277 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
- 批准号:
DGDND-2022-04277 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
- 批准号:
RGPIN-2022-04277 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
- 批准号:
DGDND-2022-04277 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Safe Adaptive Social Cyber Physical Systems
安全自适应社交网络物理系统
- 批准号:
RTI-2020-00733 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Research Tools and Instruments
Safe Adaptive Social Cyber Physical Systems
安全自适应社交网络物理系统
- 批准号:
RTI-2020-00733 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Research Tools and Instruments
相似国自然基金
机器人辅助甲状腺结节自动精准定位与穿刺关键技术研究
- 批准号:62303473
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型钛合金叠层构件制孔锪窝机器人关键技术及装备
- 批准号:52375018
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
主动增强运载能力的人机融合可穿戴轮腿式机器人关键技术研究
- 批准号:62333007
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
面向室内救援机器人决策优化的关键技术研究
- 批准号:62373258
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多无人机异构协同的飞行并联机器人一体化设计与交互作业关键技术研究
- 批准号:62303095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
- 批准号:
RGPIN-2016-04635 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual