Visual Models - Application to Situational Awareness

视觉模型 - 态势感知的应用

基本信息

  • 批准号:
    RGPIN-2016-04638
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research addresses the problem of representations for computer vision, specifically how to capture information from a sensor network and create computer models that faithfully reflect an environment over time. There are 3 specific sub-projects within this proposal. The first deals with providing situational awareness for a robotic assistant working in conjunction with a human. Objects (humans + machines) are represented as articulated 3D models that track their real world counterparts in real time. The scientific focus is how to capture and model dynamic behavior so that the system can identify or control the activities of each occupant. Following on previous work with GM research, the goal is to embed robotic assistants with more powerful and reliable situational awareness so that practical implementations become possible. If this vision is successful, future assembly lines will be comprised of human-robot teams collaborating to manufacture products, greatly scaling up productivity and allowing Canada to remain competitive in the global marketplace. The remaining 2 sub-projects are aimed at representations that enable humans to have more precise knowledge about their environments, and robots to be able to function within them. In the first, Sparse Data Models, we look at the problem of how to recover descriptions of an environment with limited sensory ability. The specific example is localizing underground mineral deposits from physical core samples, which are very sparse relative to what one finds in images. We recently have developed some new stochastic modeling techniques that show promise for extending conventional image reconstruction algorithms to these challenging datasets. If successful, this research will lead to more precise algorithms for localizing mineral deposits, which in turn could have a significant impact on mining operations by reducing costs for excavation, transport and processing. Finally, the Deep Learning sub-project is an attempt to leverage impressive technical progress in machine learning to determine representations that are better suited to natural forms. Our focus is on the practical implementation of Hierarchical Generative Models using Convolutional Deep Boltzman machine networks, with the goal of achieving comparable performance with a substantial reduction in complexity. This research will contribute to work with GM in building sensor systems that can operate in off-road environments under adverse weather conditions, as well as resource industry projects that involve identifying structures and landmarks in GPS-deprived environments.
我的研究解决了计算机视觉的表示问题,特别是如何从传感器网络捕获信息并创建忠实地反映环境随着时间的时候的计算机模型。 该提案中有3个特定的子项目。 第一个涉及为与人一起工作的机器人助手提供情境意识。 物体(人类 +机器)表示为铰接的3D模型,可实时跟踪其现实世界中的对应物。 科学重点是如何捕获和建模动态行为,以便系统可以识别或控制每个乘员的活动。 在以前的GM研究工作之后,目标是将机器人助手嵌入更强大,更可靠的情境意识,以便实现实际实施。 如果这种愿景成功,未来的装配线将由人机团队组成,这些团队合作生产产品,大大扩大生产率并允许加拿大在全球市场上保持竞争力。 其余的两个子项目的目的是使人能够对环境具有更精确的知识,并能够在其内部运作。 在第一个稀疏数据模型中,我们研究了如何以有限的感官能力恢复对环境的描述的问题。 具体的例子是从物理核心样品中定位地下矿物质沉积物,相对于图像中发现的情况非常稀疏。 我们最近开发了一些新的随机建模技术,这些技术显示了将常规图像重建算法扩展到这些具有挑战性的数据集的希望。 如果成功的话,这项研究将导致更精确的算法来定位矿藏,这反过来又可能通过降低开挖,运输和加工成本来对采矿业务产生重大影响。 最后,深度学习子项目是试图利用机器学习中令人印象深刻的技术进步来确定更适合自然形式的表示形式。 我们的重点是使用卷积Deep Boltzman机器网络对层次生成模型的实际实施,目的是实现可比的性能,并大大降低复杂性。 这项研究将有助于与通用汽车合作,以在不利天气条件下在越野环境中运行的建筑传感器系统,以及涉及识别GPS剥夺环境中的结构和地标的资源行业项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ferrie, Frank其他文献

Active Vision in the Era of Convolutional Neural Networks

Ferrie, Frank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ferrie, Frank', 18)}}的其他基金

Visual Models - Application to Situational Awareness
视觉模型 - 态势感知的应用
  • 批准号:
    RGPIN-2016-04638
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Embedding AI in Smart Sensors
将人工智能嵌入智能传感器
  • 批准号:
    544091-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Engage Grants Program
Visual Models - Application to Situational Awareness
视觉模型 - 态势感知的应用
  • 批准号:
    RGPIN-2016-04638
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Models - Application to Situational Awareness
视觉模型 - 态势感知的应用
  • 批准号:
    RGPIN-2016-04638
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Models - Application to Situational Awareness
视觉模型 - 态势感知的应用
  • 批准号:
    RGPIN-2016-04638
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Models - Application to Situational Awareness
视觉模型 - 态势感知的应用
  • 批准号:
    RGPIN-2016-04638
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretation of visual models
视觉模型解读
  • 批准号:
    36560-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretation of visual models
视觉模型解读
  • 批准号:
    36560-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretation of visual models
视觉模型的解读
  • 批准号:
    36560-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Human gesture recognition using multimodal sensor for automated surveillance
使用多模态传感器进行人体手势识别进行自动监控
  • 批准号:
    441826-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Engage Grants Program

相似国自然基金

跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
  • 批准号:
    52307233
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
  • 批准号:
    61170001
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目

相似海外基金

Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
  • 批准号:
    10720562
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Redefining the factors that determine tear film stability to develop novel therapeutics for evaporative dry eye disease
重新定义决定泪膜稳定性的因素,开发蒸发性干眼病的新疗法
  • 批准号:
    10678045
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Topical Eyedrops Increasing Lysyl Oxidase Activity to Control Myopia
局部滴眼剂增加赖氨酰氧化酶活性来控制近视
  • 批准号:
    10603432
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
No power, at home COVID diagnostic with tactile readout
无需电源,通过触觉读数在家进行新冠肺炎诊断
  • 批准号:
    10649019
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
  • 批准号:
    10635511
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了