Research and development of a cloud-based context-aware API for semantic scene understanding
基于云的上下文感知API的语义场景理解研究与开发
基本信息
- 批准号:558247-2020
- 负责人:
- 金额:$ 2.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Augmented Reality (AR) has become a promising tool for enhancing the quality of experience in digital media products. However, the technical tools available for AR lacks in providing the rich understanding required to design interactive digital experiences quickly and efficiently. In partnership with AWE Company Ltd, this research project will attempt at developing a context-aware Application Programming Interface (API) that can provide a semantic understanding of a user's surrounding by intelligently distributing the camera feed data from a user's device on to three separate sub-modules for semantic understanding: building facade segmentation, floor plan creation, and object localization. Through understanding the user's context (i.e. the requirement of the understanding of the aforementioned semantics), the proposed API can reduce the computational and data overhead required to run the neural network-based systems on the cloud. The proposed project will employ Distributed Deep Neural Network (DDNN) design principles to carefully distribute the computational task between the clients and the cloud, while building the semantic understanding stack on top of available technology tools such as ARCore/ARKit, so that AWE's software developers can easily integrate the proposed solution into their product development pipeline.
The proposed API will result in a robust framework for quick distribution of digital twins projects that AWE plans to roll out for many of its clients within the next two years. The proposed research will help to position Canada as a leader in multimedia technologies, while the resultant technology transfer to Canadian industry will strengthen Canada's global competitiveness and create positive impacts to Canadian economy and society.
增强现实 (AR) 已成为增强数字媒体产品体验质量的有前景的工具。然而,可用于 AR 的技术工具缺乏提供快速有效地设计交互式数字体验所需的丰富理解。该研究项目将与 AWE Company Ltd 合作,尝试开发上下文感知应用程序编程接口 (API),通过智能地将来自用户设备的摄像头馈送数据分配到三个独立的子系统上,提供对用户周围环境的语义理解。 -语义理解模块:建筑立面分割、平面图创建和对象定位。通过了解用户的上下文(即理解上述语义的要求),所提出的 API 可以减少在云上运行基于神经网络的系统所需的计算和数据开销。拟议的项目将采用分布式深度神经网络(DDNN)设计原理,在客户端和云端之间仔细分配计算任务,同时在 ARCore/ARKit 等可用技术工具之上构建语义理解堆栈,以便 AWE 的软件开发人员可以轻松地将建议的解决方案集成到他们的产品开发流程中。
拟议的 API 将形成一个强大的框架,用于快速分发数字孪生项目,AWE 计划在未来两年内为其许多客户推出该项目。拟议的研究将有助于使加拿大成为多媒体技术的领导者,而由此产生的向加拿大工业的技术转让将增强加拿大的全球竞争力,并对加拿大经济和社会产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Naimul其他文献
CNN-Based Multistage Gated Average Fusion (MGAF) for Human Action Recognition Using Depth and Inertial Sensors
- DOI:
10.1109/jsen.2020.3028561 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Mobile Health-Supported Virtual Reality and Group Problem Management Plus: Protocol for a Cluster Randomized Trial Among Urban Refugee and Displaced Youth in Kampala, Uganda (Tushirikiane4MH, Supporting Each Other for Mental Health).
- DOI:
10.2196/42342 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:1.7
- 作者:
Logie, Carmen H;Okumu, Moses;Kortenaar, Jean-Luc;Gittings, Lesley;Khan, Naimul;Hakiza, Robert;Kibuuka Musoke, Daniel;Nakitende, Aidah;Katisi, Brenda;Kyambadde, Peter;Khan, Torsum;Lester, Richard;Mbuagbaw, Lawrence - 通讯作者:
Mbuagbaw, Lawrence
Inertial Sensor Data to Image Encoding for Human Action Recognition
- DOI:
10.1109/jsen.2021.3062261 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability
- DOI:
10.3390/make3030027 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:3.9
- 作者:
Zafar, Muhammad Rehman;Khan, Naimul - 通讯作者:
Khan, Naimul
Human Action Recognition Using Deep Multilevel Multimodal (M2) Fusion of Depth and Inertial Sensors
- DOI:
10.1109/jsen.2019.2947446 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Khan, Naimul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Naimul', 18)}}的其他基金
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2022
- 资助金额:
$ 2.17万 - 项目类别:
Discovery Grants Program - Individual
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2021
- 资助金额:
$ 2.17万 - 项目类别:
Collaborative Research and Development Grants
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2021
- 资助金额:
$ 2.17万 - 项目类别:
Discovery Grants Program - Individual
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
DGECR-2020-00438 - 财政年份:2020
- 资助金额:
$ 2.17万 - 项目类别:
Discovery Launch Supplement
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2020
- 资助金额:
$ 2.17万 - 项目类别:
Discovery Grants Program - Individual
COVID-19 and the Efficacy of Using Virtual Reality Scenarios to Safely Train Police in Mental Health Crisis Response
COVID-19 以及使用虚拟现实场景安全培训警察应对心理健康危机的功效
- 批准号:
554476-2020 - 财政年份:2020
- 资助金额:
$ 2.17万 - 项目类别:
Alliance Grants
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2020
- 资助金额:
$ 2.17万 - 项目类别:
Collaborative Research and Development Grants
COVID-19 - An intelligent system for contact tracing, monitoring, and privacy preserving data analytics during the COVID-19 pandemic
COVID-19 - 用于在 COVID-19 大流行期间进行接触者追踪、监控和隐私保护数据分析的智能系统
- 批准号:
551077-2020 - 财政年份:2020
- 资助金额:
$ 2.17万 - 项目类别:
Alliance Grants
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2019
- 资助金额:
$ 2.17万 - 项目类别:
Collaborative Research and Development Grants
Intelligent scene understanding for collaborative mobile augmented reality
协作移动增强现实的智能场景理解
- 批准号:
530666-2018 - 财政年份:2018
- 资助金额:
$ 2.17万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
青藏高原地区不同类型气溶胶影响对流云发生、发展的机理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于分档云微物理方案的气溶胶影响深对流云发生发展机理模拟研究
- 批准号:42275078
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
西北太平洋热带气旋生成过程中弱组织化热带深对流云群持续发展的观测分析和机制研究
- 批准号:42075011
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
云内先导发展对正地闪放电过程的影响研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
华南前汛期深对流云不同发展阶段云微物理垂直结构的气候特征及演变机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:
10637093 - 财政年份:2023
- 资助金额:
$ 2.17万 - 项目类别:
Comprehensive and non-invasive prenatal screening of coding variation
全面、无创的编码变异产前筛查
- 批准号:
10678005 - 财政年份:2023
- 资助金额:
$ 2.17万 - 项目类别: