Artificial intelligence (AI) based deep learning of defects, surface roughness and their linkage to mechanical performance of additively manufactured (AM) aluminum alloys

基于人工智能 (AI) 的缺陷、表面粗糙度及其与增材制造 (AM) 铝合金机械性能的联系的深度学习

基本信息

  • 批准号:
    549214-2019
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This Alliance project focuses on application of artificial intelligence (AI) based machine learning (ML) approaches to the field of additive manufacturing (AM) to develop a framework for bridging length scales and establishing linkages between process parameters, microstructural features and the resulting mechanical performance characteristics of additively manufactured parts. One of the major concerns in AM build parts is the variation in the microstructure along with the process induced defects such as porosity and surface roughness. The mechanical properties such as fatigue life of these materials are strongly governed by the choice of process parameters employed during the fabrication process. A wide variety of synergistic factors such as laser process parameters, surface roughness, residual stresses and porosity can significantly influence the fatigue behavior of AM parts. A lack of understanding of the linkages between such factors is the most critical decision-making gap for AM process optimization and its wide scale applicability. In these regards, artificial intelligence (AI) based machine learning tools are key enablers for identification and quantification of such essential material and process parameters or salient features for improved mechanical performance of AM parts. This project combines the latest advancements in the field of artificial intelligence and additive manufacturing, both theoretically and experimentally with an aim to investigate microstructure, property and performance relationships for 3D printed aluminum alloys by means of laser powder bed fusion (LPBF) technology.
该联盟项目的重点是基于人工智能(AI)的机器学习(ML)的应用方法,以在添加剂制造(AM)领域(AM)开发一个框架,以桥接长度尺度,并在过程参数,微观结构特征和由此产生的添加零件的机械性能特征之间建立联系。 AM构建部分的主要关注点之一是微观结构的变化以及过程引起的缺陷,例如孔隙度和表面粗糙度。这些材料的疲劳寿命等机械性能受到制造过程中采用的过程参数的选择。各种各样的协同因素,例如激光过程参数,表面粗糙度,残留应力和孔隙率可以显着影响AM部分的疲劳行为。缺乏对这些因素之间联系的了解是AM过程优化及其广泛适用性的最关键决策差距。在这些方面,基于人工智能(AI)的机器学习工具是识别和量化此类基本材料和过程参数或显着特征以改善AM零件机械性能的关键推动者。该项目结合了人工智能领域和添加剂制造领域的最新进步,无论是在理论上还是实验上,旨在通过激光粉末融合(LPBF)技术研究3D印刷铝合金的微观结构,财产和性能关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Inal, Kaan其他文献

A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys
  • DOI:
    10.1016/j.ijplas.2020.102867
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Muhammad, Waqas;Brahme, Abhijit P.;Inal, Kaan
  • 通讯作者:
    Inal, Kaan
Application of artificial neural networks in micromechanics for polycrystalline metals
  • DOI:
    10.1016/j.ijplas.2019.05.001
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Ali, Usman;Muhammad, Waqas;Inal, Kaan
  • 通讯作者:
    Inal, Kaan
Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting
A computational mechanics engineering framework for predicting the axial crush response of Aluminum extrusions
  • DOI:
    10.1016/j.tws.2019.02.007
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kohar, Christopher P.;Brahme, Abhijit;Inal, Kaan
  • 通讯作者:
    Inal, Kaan
A new crystal plasticity constitutive model for simulating precipitation-hardenable aluminum alloys
  • DOI:
    10.1016/j.ijplas.2020.102759
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Li, Y. Larry;Kohar, Christopher P.;Inal, Kaan
  • 通讯作者:
    Inal, Kaan

Inal, Kaan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Inal, Kaan', 18)}}的其他基金

Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
  • 批准号:
    RGPIN-2017-04739
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
An artificial intelligence based approach to account for the effects of microstructure gradients and residual stresses on fatigue performance of additively manufactured aluminum
一种基于人工智能的方法,用于解释微观结构梯度和残余应力对增材制造铝疲劳性能的影响
  • 批准号:
    566664-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Micromechanics based Modelling of Formability and Fracture in Dual Phase and Quenched and Partitioned Steels
基于微观力学的双相钢、淬火钢和分割钢的成形性和断裂建模
  • 批准号:
    558388-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Micromechanics based Modelling of Formability and Fracture in Dual Phase and Quenched and Partitioned Steels
基于微观力学的双相钢、淬火钢和分割钢的成形性和断裂建模
  • 批准号:
    558388-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
NSERC/General Motors of Canada Industrial Research Chair in Integrated Computational Mechanics for Mass Efficient Automotive Structures
NSERC/加拿大通用汽车大规模高效汽车结构集成计算力学工业研究主席
  • 批准号:
    503184-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Industrial Research Chairs
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
  • 批准号:
    RGPIN-2017-04739
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
  • 批准号:
    RGPIN-2017-04739
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/General Motors of Canada Industrial Research Chair in Integrated Computational Mechanics for Mass Efficient Automotive Structures
NSERC/加拿大通用汽车大规模高效汽车结构集成计算力学工业研究主席
  • 批准号:
    503185-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Industrial Research Chairs
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
  • 批准号:
    RGPIN-2017-04739
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Virtual Characterization of the mechanical properties of aluminum alloys at elevated temperatures
铝合金高温机械性能的虚拟表征
  • 批准号:
    528296-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program

相似国自然基金

染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
KCNQ2基因变异导致智力障碍的致病机制研究
  • 批准号:
    82301347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
  • 批准号:
    22366007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
MTOR基因突变异常激活mTORC2-PKC信号通路导致智力障碍-巨脑畸形综合征的机制研究
  • 批准号:
    82302096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
  • 批准号:
    2334510
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of an Artificial Intelligence (AI) approach to quantify and diagnose spinal cord diseases
I-Corps:人工智能 (AI) 方法量化和诊断脊髓疾病的转化潜力
  • 批准号:
    2416075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
  • 批准号:
    2338479
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了