Atomic magnetism of skyrmion lattices: Probing Dzyaloshinskii-Moriya interactions using advanced low temperature conversion electron Mössbauer spectroscopy

斯格明子晶格的原子磁性:利用先进的低温转换电子穆斯堡尔光谱探测 Dzyaloshinskii-Moriya 相互作用

基本信息

  • 批准号:
    RTI-2020-00453
  • 负责人:
  • 金额:
    $ 6.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My research program is focused on the study of the mechanisms responsible for nanoscale magnetism, especially at interfaces. Of special interest is understanding the stabilization of the nanosized swirls of magnetic texture called skyrmions. Skyrmions behave as particles and can be moved, created and annihilated. They will revolutionize spintronics as they can be made to perform arithmetic logic, and offer ultra low energy information storage and radio frequency technologies at room temperature using electrical currents. Creating and controlling skyrmions requires knowing how to manipulate the spin-orbit coupling (SOC) magnetism of neighbouring atoms at interfaces. Spectroscopy is a natural tool to use to quantify SOC, and Mössbauer spectroscopy is ideally suited to probe the SOC and interfacial magnetism. The chirality of skyrmions determines most properties, and the chiral interactions are stabilized by the Dzyaloshinskii-Moriya interaction (DMI). In the 1960s and 70s, Mössbauer spectroscopy was key to quantifying DMI in bulk compounds, and identifying the underlying physics of DMI-driven magnetism that are now used in skyrmionic thin films. With the proposed equipment and my expertise in spectroscopy and new detector physics, I intend to open up a new avenue towards understanding the interface physics of skyrmions.******This equipment proposal is for a Mössbauer refrigeration system with 5 to 300 K (-270 to 25C) temperature capability. It will provide a vibration-free and temperature controlled environment for novel conversion electron Mössbauer spectroscopy experiments on skymionic (and other) thin films. The challenges of updating this technique to thin films are significant, but my group is optimally positioned to succeed. The experiments using the proposed equipment will provide key information and complement the other techniques my group uses, such as x-ray synchrotron spectroscopies that also probe SOC magnetism. Overall, the new insights my HQP discover are sure to enhance significantly the understanding of SOC, and the identification of the physics of processes at interfaces from SOC effects, anisotropy, and DMI. This new knowledge will apply well beyond skyrmionic films to the magnetism at interfaces that underlie current and future information storage (e.g. media and sensing). Knowledge translation with industrial collaborators at Seagate Technology R&D will feed into new technologies. Spectroscopy is central to my research and HQP training, and the requested equipment will advance both. The research we do with this equipment will have my HQP learn cutting-edge instrument design and construction (including new 3D printing and design skills that are transferable to advanced manufacturing), vacuum systems, cryogenics, detectors, fast electronics and computer data acquisition. The skills my HQP learn with this equipment will serve them exceptionally well later in their careers in research- and technology-based industries.
我的研究计划的重点是研究负责纳米级磁性的机制,尤其是在接口处。特别感兴趣的是了解称为Skyrmions的磁纹理的纳米化漩涡的稳定。天空作为粒子的行为,可以移动,创建和消灭。他们将革新Spintronics,因为它们可以执行算术逻辑,并在室温下使用电流提供超低的能量信息存储和射频技术。创建和控制天空需要知道如何操纵界面上相邻原子的旋转轨道耦合(SOC)磁性。光谱法是用于量化SOC的天然工具,Mössbauer光谱法非常适合探测SOC和界面磁性。 Skyrmions的手性决定了大多数特性,并且通过Dzyaloshinskii-Moriya相互作用(DMI)稳定了手性相互作用。在1960年代和70年代,Mössbauer光谱是量化散装化合物中DMI的关键,并鉴定了现在在Skyrmionic薄膜中使用的DMI驱动磁性物理学。借助拟议的设备以及我在光谱和新探测器物理学方面的专业知识,我打算为了解Skyrmions的界面物理学开放新的途径。它将为新型转换电子莫斯鲍尔光谱实验提供无振动和温度控制的环境。将该技术更新为薄膜的挑战很重要,但是我的小组在最佳方面取得了成功。使用建议的设备的实验将提供关键信息,并完成我的小组使用的其他技术,例如也探测SOC磁性的X射线同步光谱镜。总体而言,我的HQP发现的新见解肯定会显着增强对SOC的理解,以及从SOC效应,各向异性和DMI中对界面的过程物理学的识别。这些新知识将远远超出了磁性胶片的范围,即在当前和将来的信息存储(例如媒体和感官)的界面处的磁性。与Seagate Technology研发的工业合作者的知识翻译将以新技术为基础。光谱学是我的研究和HQP培训的核心,所需的设备将两者都推进。我们使用此设备进行的研究将使我的HQP学习尖端的仪器设计和构建(包括转移到高级制造的新3D打印和设计技能),真空系统,低温,检测器,快速电子产品和计算机数据获取。我的HQP使用此设备学习的技能将在其研究和技术行业的职业生涯中为他们提供极大的服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VanLierop, Johan其他文献

VanLierop, Johan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VanLierop, Johan', 18)}}的其他基金

Unravelling nanoscale ordering by investigating the emerging pathways between electronic structure and magnetism
通过研究电子结构和磁性之间的新兴途径来揭示纳米级有序性
  • 批准号:
    RGPIN-2018-05012
  • 财政年份:
    2019
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetism in reduced dimensions: Nanoparticles, thin films and quantum spin systems
降维磁性:纳米粒子、薄膜和量子自旋系统
  • 批准号:
    311888-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetism in reduced dimensions: Nanoparticles, thin films and quantum spin systems
降维磁性:纳米粒子、薄膜和量子自旋系统
  • 批准号:
    311888-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetism in reduced dimensions: Nanoparticles, thin films and quantum spin systems
降维磁性:纳米粒子、薄膜和量子自旋系统
  • 批准号:
    311888-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Emergency repairs to the helium liquefier
氦液化器紧急抢修
  • 批准号:
    390282-2010
  • 财政年份:
    2009
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Magnetism in reduced dimensions: Nanoparticles, thin films and quantum spin systems
降维磁性:纳米粒子、薄膜和量子自旋系统
  • 批准号:
    311888-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetism in nanoparticle and thin-film assemblies
纳米颗粒和薄膜组件中的磁性
  • 批准号:
    311888-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetism in nanoparticle and thin-film assemblies
纳米颗粒和薄膜组件中的磁性
  • 批准号:
    311888-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual
Precision impedance analyser for nano and mesoscale materials characterization
用于纳米和介观尺度材料表征的精密阻抗分析仪
  • 批准号:
    345287-2007
  • 财政年份:
    2006
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Magnetism in nanoparticle and thin-film assemblies
纳米颗粒和薄膜组件中的磁性
  • 批准号:
    311888-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Skyrmion拓扑磁结构的高频磁动态特性机理研究
  • 批准号:
    51902269
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Skyrmion磁基元与材料微结构关联的原位电子全息研究
  • 批准号:
    11774403
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
几何受限磁体中skyrmion的形成与动力学调控研究
  • 批准号:
    11604059
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
与Skyrmion态相关的螺旋磁有序体系的磁性研究
  • 批准号:
    11574322
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
垂直各向异性多层膜中边界控制的单个磁skyrmion的产生、移动及湮灭机制研究
  • 批准号:
    11404053
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A new material landscape of rare-earth intermetallics for exploration non-trivial topological spin textures
用于探索非平凡拓扑自旋纹理的稀土金属间化合物新材料景观
  • 批准号:
    23K13069
  • 财政年份:
    2023
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topotactic Control of Magnetism in Multiferroic and Skyrmion Materials
多铁性和斯格明子材料中磁性的拓扑控制
  • 批准号:
    DP210102346
  • 财政年份:
    2021
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Discovery Projects
Topological spin textures in frustrated magnets and their coupling to conduction electrons
受挫磁体中的拓扑自旋纹理及其与传导电子的耦合
  • 批准号:
    21K13877
  • 财政年份:
    2021
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interplay between topology and thermal fluctuation in skyrmion-hosting materials
斯格明子材料中拓扑结构和热波动之间的相互作用
  • 批准号:
    20K14410
  • 财政年份:
    2020
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Memory, Logic Computing, and Neural Networks Based on Topological Spin Textures
基于拓扑自旋纹理的内存、逻辑计算和神经网络
  • 批准号:
    20F20363
  • 财政年份:
    2020
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了