Modeling and validation of constructive and destructive solid particle erosion processes

建设性和破坏性固体颗粒侵蚀过程的建模和验证

基本信息

  • 批准号:
    RGPIN-2019-04633
  • 负责人:
  • 金额:
    $ 5.54万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Multiple impacts of small high speed solid particles can cause surfaces to wear away in a process known as solid particle erosion (SPE). Destructive SPE occurs in the many industrial processes where particulates are carried by a gas or liquid to impact components such as turbine blades, cyclones, ducts, pipelines, pumps, valves, etc. SPE can also be constructive, such as when abrasive particle jets are used to machine surfaces or remove coatings and contaminants. The proposed research will develop new models that can be used to predict SPE for both constructive and destructive applications. ******The models we develop will be used to improve the wear resistance of particle reinforced, polymer matrix composites (PRPMCs), i.e., materials that contain both a polymer matrix and ceramic reinforcement particles. PRPMCs are used as protect a wide variety of components in industry. For example, they can be applied to components impacted by fly ash during the treatment of flue gases from combustion processes, or to protect wind turbine blades. Similar materials are also used as lightweight armours for military vehicles.******The models will also be used to predict the shape of fins and pillars that can be rapidly and efficiently machined into metals using abrasive waterjet (AWJM) and slurry jet micro-machining (ASJM). Such fins and pillars can be used in heat sinks used to cool micro-electronic devices. We will also develop ways that they can be used as micro-molds to mass produce microfluidic devices. Such devices employ micro-channels to mix or separate fluids, or to sort different types of cells suspended in the fluids in a variety of bio-analytical applications. The next generation of these devices will be 3D, with channels at different depths, and AWJM and ASJM are uniquely suited to allow the machining of such features. ******Finally, the models will be used to allow ASJM of novel microfluidic devices on rods. The channels in microfluidic devices are normally etched into flat plates. This limits the length of the channels, and thus the amount of time the fluid mixing, separation, or cell sorting can occur. Micro-machining tightly packed helical channels on thin rods would result in much longer channels for the same device footprint, thus greatly increasing device efficiency. However, traditional cutting tools cannot be used to machine thin rods without bending or fracturing them, and chemical etching based methods are difficult to use because of the difficulty in making stencil masks to define the channels. ASJM, however, can directly machine the rods, without fracturing or bending them. ******Overall, the models will allow new types of erosion resistant materials to be made, thus reducing costs associated with shutdowns to repair worn components at Canadian industrial plants. They will also allow new types of 3D and rod-based devices to be made for start-up companies in the growing Canadian micro-technology sector.*****
小型高速固体颗粒的多次撞击可能会导致表面磨损,这一过程称为固体颗粒侵蚀 (SPE)。破坏性 SPE 发生在许多工业过程中,其中气体或液体携带颗粒撞击涡轮叶片、旋风分离器、管道、管道、泵、阀门等部件。SPE 也可以是建设性的,例如当磨料颗粒射流被用于加工表面或去除涂层和污染物。拟议的研究将开发新模型,可用于预测建设性和破坏性应用的 SPE。 ******我们开发的模型将用于提高颗粒增强聚合物基复合材料 (PRPMC) 的耐磨性,即同时含有聚合物基体和陶瓷增强颗粒的材料。 PRPMC 用于保护工业中的各种组件。例如,它们可应用于处理燃烧过程中产生的烟气时受飞灰影响的部件,或保护风力涡轮机叶片。类似的材料也被用作军用车辆的轻质装甲。******这些模型还将用于预测翅片和支柱的形状,这些翅片和支柱可以使用磨料水射流 (AWJM) 和浆料射流快速有效地加工成金属微加工(ASJM)。这样的翅片和支柱可以用在用于冷却微电子器件的散热器中。我们还将开发将它们用作微模具来批量生产微流体装置的方法。此类设备采用微通道来混合或分离流体,或在各种生物分析应用中对悬浮在流体中的不同类型的细胞进行分类。这些设备的下一代将是 3D 设备,具有不同深度的通道,AWJM 和 ASJM 非常适合加工此类特征。 ******最后,这些模型将用于允许杆上新型微流体装置的 ASJM。微流体装置中的通道通常蚀刻在平板上。这限制了通道的长度,从而限制了流体混合、分离或细胞分选可以发生的时间。在细棒上微加工紧密堆积的螺旋通道将在相同的器件占地面积下产生更长的通道,从而大大提高器件效率。然而,传统的切削工具无法在不弯曲或断裂的情况下加工细棒,并且由于难以制作模板掩模来限定通道,因此难以使用基于化学蚀刻的方法。然而,ASJM 可以直接加工棒材,而不会使其断裂或弯曲。 ******总体而言,这些模型将允许制造新型耐腐蚀材料,从而降低与加拿大工厂停工修复磨损部件相关的成本。它们还将允许为不断发展的加拿大微技术领域的初创公司制造新型 3D 和基于杆的设备。 *****

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Papini, Marcello其他文献

Inertial particle separation in helical channels: A calibrated numerical analysis
  • DOI:
    10.1063/5.0030930
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Palumbo, Joshua;Navi, Maryam;Papini, Marcello
  • 通讯作者:
    Papini, Marcello
Cortical screw pullout strength and effective shear stress in synthetic third generation composite femurs
Effect of entrained air in abrasive water jet micro-machining: Reduction of channel width and waviness using slurry entrainment
  • DOI:
    10.1016/j.wear.2015.10.008
  • 发表时间:
    2015-12-15
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Haghbin, Naser;Ahmadzadeh, Farbod;Papini, Marcello
  • 通讯作者:
    Papini, Marcello
Measurement of Adhesion of Sternal Wires to a Novel Bioactive Glass-Based Adhesive
  • DOI:
    10.3390/jfb10030037
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Sidhu, Varinder Pal Singh;Towler, Mark R.;Papini, Marcello
  • 通讯作者:
    Papini, Marcello

Papini, Marcello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Papini, Marcello', 18)}}的其他基金

Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2021
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2020
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
  • 批准号:
    RGPIN-2014-03895
  • 财政年份:
    2018
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
A confocal, interferometry, and focus variation based three dimensional profilometer
基于共焦、干涉测量和焦点变化的三维轮廓仪
  • 批准号:
    RTI-2019-00564
  • 财政年份:
    2018
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Research Tools and Instruments
Abrasive Jet Technology
喷砂技术
  • 批准号:
    1000228028-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Canada Research Chairs
Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
  • 批准号:
    RGPIN-2014-03895
  • 财政年份:
    2017
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
  • 批准号:
    RGPIN-2014-03895
  • 财政年份:
    2016
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Solid particle erosion mechanisms in ceramic and polymer filled epoxy coatings for flue gas ducting and cyclone applications
用于烟气管道和旋风分离器应用的陶瓷和聚合物填充环氧涂层中的固体颗粒侵蚀机制
  • 批准号:
    494082-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Engage Grants Program
Abrasive Jet Technology
喷砂技术
  • 批准号:
    1000228028-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

零背景荧光信号的近红外罗丹明类γ-谷氨酰转肽酶荧光探针的理论设计与实验验证研究
  • 批准号:
    32360236
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
环境司法专门化的绿色治理效应与影响机制研究——来自非上市企业的经验证据
  • 批准号:
    72302131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
加标Petri网框架下的网络化离散事件系统临界可观性验证与强化控制
  • 批准号:
    62303375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会经济状态对幸福感的因果影响:来自中国的自然实验证据
  • 批准号:
    72373061
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2021
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
  • 批准号:
    RGPIN-2019-04633
  • 财政年份:
    2020
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Discovery Grants Program - Individual
Constructive Assessment: Study Equity, Validation and Communication
建设性评估:研究公平性、验证和沟通
  • 批准号:
    9496045
  • 财政年份:
    1993
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Continuing Grant
Constructive Assessment: Study Equity, Validation and Communication
建设性评估:研究公平性、验证和沟通
  • 批准号:
    9252963
  • 财政年份:
    1992
  • 资助金额:
    $ 5.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了