Carbon nanomaterials reinforced polyurethane composite as coating for oil pipelines and flanges
碳纳米材料增强聚氨酯复合材料作为石油管道和法兰涂层
基本信息
- 批准号:501148-2016
- 负责人:
- 金额:$ 4.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In oil and gas industry, corrosion and abrasion are a destructive phenomenon that poses a serious threat to continued pipeline operation and ultimately the economy. Those problem of pipelines used in the oil and gas industry is an ongoing concern that needs to be resolved. Therefore, a growing number of studies have been devoted to exploring various approaches for inhibiting or mitigating corrosion and abrasion. To achieve this requirement, pipeliners which are comprised to polymer composites with a carbon nanomaterial fillers can be applied to the inside of the hydro-transport pipeline for oil sands. This proposal will provide a significant technological advancement to the current state of pipeliner, based on the polyurethane carbon nanotube/grapheme composites, for hydro-transport piping system. Through an industrial partnership with Pro-flange, this proposed pipeliner will contain chemically modified and size controlled carbon nanotubes/graphene to increase its erosion and abrasion resistant properties. Then, polymer compounding system or polymer casting process will be developed to fabricate the lined pipe to apply the industrial field test by closely working with Profalnge's current contracted coating firm. This unique hydro-transport system will extend the replacement period rather than conventional piping system for Canadian oil sands. This research and development of high corrosion and abrasion resistant pipeliner system for oil sands necessitates fundamental knowledge of a polymer composite and carbon nanotube/graphene as well as industrial experience about the piping system. For this reason, the proposed research will strengthen the academic-industrial relationship between Pro-Flange staff and Dr. Yu's and Elkamel's research group at University of Waterloo.
在石油和天然气工业中,腐蚀和磨损是一种破坏性现象,对管道的持续运行并最终对经济构成严重威胁。石油和天然气行业使用的管道问题是一个需要解决的持续问题。因此,越来越多的研究致力于探索抑制或减轻腐蚀和磨损的各种方法。为了实现这一要求,由具有碳纳米材料填料的聚合物复合材料组成的管道可以应用于油砂水力输送管道的内部。该提案将为基于聚氨酯碳纳米管/石墨烯复合材料的水力输送管道系统的管道现状提供重大技术进步。通过与 Pro-flange 的工业合作伙伴关系,该拟议管道将包含经过化学改性和尺寸控制的碳纳米管/石墨烯,以提高其耐侵蚀和耐磨性能。然后,通过与Profalnge目前签约的涂层公司密切合作,将开发聚合物复合系统或聚合物铸造工艺来制造内衬管道,以应用工业现场测试。这种独特的水力运输系统将比传统的加拿大油砂管道系统延长更换周期。用于油砂的高腐蚀和耐磨管道系统的研究和开发需要聚合物复合材料和碳纳米管/石墨烯的基础知识以及管道系统的工业经验。因此,拟议的研究将加强 Pro-Flange 工作人员与滑铁卢大学 Yu 博士和 Elkamel 研究小组之间的学术与工业关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Aiping其他文献
Ultrathin, transparent, and flexible graphene films for supercapacitor application
- DOI:
10.1063/1.3455879 - 发表时间:
2010-06-21 - 期刊:
- 影响因子:4
- 作者:
Yu, Aiping;Roes, Isaac;Chen, Zhongwei - 通讯作者:
Chen, Zhongwei
Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities
- DOI:
10.1039/c6ta00159a - 发表时间:
2016-01-01 - 期刊:
- 影响因子:11.9
- 作者:
Liu, Wenwen;Lu, Congxiang;Yu, Aiping - 通讯作者:
Yu, Aiping
Anode-free sodium metal batteries as rising stars for lithium-ion alternatives.
- DOI:
10.1016/j.isci.2023.105982 - 发表时间:
2023-03-17 - 期刊:
- 影响因子:5.8
- 作者:
Yang, Tingzhou;Luo, Dan;Liu, Yizhou;Yu, Aiping;Chen, Zhongwei - 通讯作者:
Chen, Zhongwei
All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor
- DOI:
10.1021/acsami.7b10182 - 发表时间:
2017-11-15 - 期刊:
- 影响因子:9.5
- 作者:
Lim, Lucas;Liu, Yangshuai;Yu, Aiping - 通讯作者:
Yu, Aiping
Highly conductive interconnected graphene foam based polymer composite
- DOI:
10.1016/j.carbon.2015.08.079 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:10.9
- 作者:
Jun, Yun-Seok;Sy, Serubbabel;Yu, Aiping - 通讯作者:
Yu, Aiping
Yu, Aiping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Aiping', 18)}}的其他基金
NSERC Steacie Memorial Fellowship
NSERC Steacie 纪念奖学金
- 批准号:
549148-2020 - 财政年份:2021
- 资助金额:
$ 4.02万 - 项目类别:
EWR Steacie Fellowships - Supplement
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
RGPIN-2017-04186 - 财政年份:2021
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Individual
NSERC Steacie Memorial Fellowship
NSERC Steacie 纪念奖学金
- 批准号:
549148-2020 - 财政年份:2020
- 资助金额:
$ 4.02万 - 项目类别:
EWR Steacie Fellowships - Supplement
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
RGPIN-2017-04186 - 财政年份:2020
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
RGPIN-2017-04186 - 财政年份:2019
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
507974-2017 - 财政年份:2019
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Production, Modification and Scale-up of Graphene Sponge for Supercapacitor Application
用于超级电容器应用的石墨烯海绵的生产、改性和放大
- 批准号:
492682-2015 - 财政年份:2019
- 资助金额:
$ 4.02万 - 项目类别:
Collaborative Research and Development Grants
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
RGPIN-2017-04186 - 财政年份:2018
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Individual
Production, Modification and Scale-up of Graphene Sponge for Supercapacitor Application
用于超级电容器应用的石墨烯海绵的生产、改性和放大
- 批准号:
492682-2015 - 财政年份:2018
- 资助金额:
$ 4.02万 - 项目类别:
Collaborative Research and Development Grants
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
507974-2017 - 财政年份:2018
- 资助金额:
$ 4.02万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
复合碳纳米材料低压膜结构设计强化有机污染物去除和生物污染控制的机理研究
- 批准号:51778014
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
碳纳米纤维耦合石墨-膨润土基复合相变材料的构筑与储热性能协同强化
- 批准号:51504041
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
碳纳米管分布形态对复合材料宏观性能的影响及强化机制的研究
- 批准号:51402117
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
纳米强化相变蓄热材料关键热物性与固液相变传热特性的微观调控机理研究
- 批准号:51276159
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于火焰法碳纳米材料的玻璃钢界面强化机理研究
- 批准号:51209023
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 4.02万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 4.02万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 4.02万 - 项目类别:
Standard Grant
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
- 批准号:
24K17589 - 财政年份:2024
- 资助金额:
$ 4.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 4.02万 - 项目类别:
Standard Grant