Power System Stability Analysis and Control Using Statistical Machine Learning Techniques

使用统计机器学习技术的电力系统稳定性分析与控制

基本信息

  • 批准号:
    RGPIN-2016-05734
  • 负责人:
  • 金额:
    $ 3.28万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Simulation methods based on conventional offline models have been used widely in power system stability analysis and control design and they constitute effective tools for ensuring system stability. Effectiveness of these stability analysis and design methods is declining steadily because of the constant evolution of the power grid environment, the changes being largely attributable to increased variations in power flow and the difficulties in acquiring accurate offline models for various power-electronics-based devices. Advancement in information and communications technologies have facilitated transfer of massive data in real time and implies an opportunity for wider applications of advanced real time monitoring systems, allowing the acquisition of data of real time conditions and dynamics of various components of power systems. This makes the whole system more observable. Meanwhile, data-driven methods such as statistical machine learning techniques have developed significantly in recent times and have been successfully applied in various areas. Therefore, real time stability analysis and control using statistical machine learning techniques has become an important research direction since it aims to perceive the system's operational situation directly through real time data and provide insights into optimal operations and controls. This has the potential to resolve the problems of biased parameters when using offline models which, in most cases, do not fit real time operating conditions in the power grid. The significance of this research motivates this research program to combine statistical machine learning with domain knowledge in power systems and make them applicable to stability analysis and control in real power systems. The long-term goal of this research program is to develop new approaches for power system stability analysis and effective online model-free and self-optimization control strategies. To achieve this ultimate goal, the short-term goals are (i) to develop new approaches for prediction, control and optimization of power systems to resolve the problem of bias in offline models used in the conventional power system simulation; and (ii) to apply the general approaches proposed in this program to various problems related to power system stability and develop new online control strategies for the same. The outcomes of this research are expected to not only constitute milestones in power system stability analysis and control, but also contribute to the development of a more reliable and stable power system in the future.*** **
基于常规离线模型的仿真方法已在电力系统稳定性分析和控制设计中广泛使用,它们构成了确保系统稳定性的有效工具。由于电网环境的不断发展,这些稳定性分析和设计方法的有效性正在稳步下降,因此,这些变化在很大程度上归因于功率流的增加以及为各种基于电力电子设备的精确离线模型获得准确的离线模型的困难。信息和通信技术的进步已经促进了大量数据的实时传输,并意味着有机会更广泛地应用高级实时监控系统,从而允许获取实时条件的数据和电源系统各个组件的动态。这使整个系统更加可观察到。同时,诸如统计机器学习技术之类的数据驱动方法近来已经显着发展,并已成功应用于各个领域。因此,使用统计机器学习技术实时稳定性分析和控制已成为重要的研究方向,因为它旨在通过实时数据直接感知系统的运行状况,并为最佳操作和控制提供见解。当使用离线模型时,在大多数情况下,这可能不符合电源网格中的实时操作条件时,有可能解决偏见参数的问题。这项研究的意义激发了该研究计划将统计机器学习与电力系统中的领域知识相结合,并使其适用于实际电力系统中的稳定性分析和控制。该研究计划的长期目标是为电力系统稳定性分析以及有效的在线模型和自我优化控制策略开发新方法。为了实现这一最终目标,短期目标是(i)开发用于预测,控制和优化电力系统的新方法,以解决常规电力系统模拟中使用的离线模型中的偏见问题; (ii)将本程序中提出的一般方法应用于与电力系统稳定性相关的各种问题,并为此开发新的在线控制策略。预计这项研究的结果不仅构成电力系统稳定性分析和控制中的里程碑,而且还有助于发展更可靠和稳定的电力系统。*** **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung, ChiYung其他文献

Chung, ChiYung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung, ChiYung', 18)}}的其他基金

Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
  • 批准号:
    RGPIN-2016-05734
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
  • 批准号:
    514655-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Collaborative Research and Development Grants
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
  • 批准号:
    514655-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Collaborative Research and Development Grants
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
  • 批准号:
    492877-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Industrial Research Chairs
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
  • 批准号:
    514655-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Collaborative Research and Development Grants
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
  • 批准号:
    RGPIN-2016-05734
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
  • 批准号:
    492877-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Industrial Research Chairs
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
  • 批准号:
    492877-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Industrial Research Chairs
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
  • 批准号:
    RGPIN-2016-05734
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
CUSTOMER SEGMENTATION AND VIRTUAL METER DEVELOPMENT BASED ON PROBABILISTIC MODELING OF RESIDENTIAL LOAD PROFILES THROUGH AMI
通过 AMI 对住宅负荷曲线进行概率建模的客户细分和虚拟仪表开发
  • 批准号:
    521306-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Engage Grants Program

相似国自然基金

多重故障和源网荷储互动作用下新型电力系统电压稳定机理与方法
  • 批准号:
    52377109
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
  • 批准号:
    62371092
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
非瞬时脉冲条件下分数阶随机系统的稳定性及其相关研究
  • 批准号:
    12361035
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
多动态交互下含风电电力系统动态稳定性评估及广域协调控制方法研究
  • 批准号:
    52377078
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
海上风电多端柔性直流送出系统稳定机理及高效协调控制方法研究
  • 批准号:
    52377119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stability Analysis of Power System with Massive Power Electronic Devices
含有大量电力电子器件的电力系统稳定性分析
  • 批准号:
    DP230100801
  • 财政年份:
    2023
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Projects
Temporal-Spatial Data Analytics for Stochastic Power System Stability
随机电力系统稳定性的时空数据分析
  • 批准号:
    DE220101277
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Early Career Researcher Award
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
  • 批准号:
    RGPIN-2016-05734
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a novel high-efficiency, high-stability energy conversion system for salinity gradient power generation
开发新型高效、高稳定性能量转换系统用于盐度梯度发电
  • 批准号:
    21H04942
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了