Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
基本信息
- 批准号:RGPIN-2016-03913
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose a research program combining two areas in which I have worked in the last years, i.e. Mobility Data Analysis and Privacy-Preservation Techniques. Mobility data is the data created by moving devices (e.g. cellphones, GPS, wifi) registering their presence, timestamp (and, for GPS enabled devices, their position) with antennas, receivers and routers. Mobility data is ubiquitous and its volume is growing constantly. Its importance for understanding human and animal behaviour is crucial, and therefore there is general interest in collecting and exploring this type of data for a vast range of applications, ranging from traffic and transportation, ecology, epidemiology, to safety and security. The fundamental mobility data concept is a trajectory - a sequence of points where each point consists of a geospatial coordinate set and a time stamp.**The main goal of the proposed research program is to develop Machine Learning methods for the analysis of human mobility at both coarse and fine granularity, making them privacy-preserving whenever this data represents - or can identify - individuals, or breach other confidential information. While it is well known that human mobility data presents enormous privacy challenges, I show that the same applies for ship movements, particularly for smaller recreational and fishing vessels. I list specific research tasks that collectively will provide tools for addressing mobility data in a private manner. These tasks also make realistic and interesting topics of graduate theses for students working with me. Those tasks are: dividing trajectories into semantically meaningful parts (segmentation), prediction of the next point in a trajectory (next move prediction), segment classification, clustering of trajectories and use of clustering as a privacy-oriented data representation, detection of anomalous trajectories, linking and integration of extraneous data with mobility data, and privacy models conducive to the special characteristics of mobility data.**Exploring partnerships of my labs with companies that collect and own large mobility datasets, I will focus on two main types of data: ships tracks on world's oceans available through a GPS-like AIS (Automatic Identification System) platform, and people's traces left with wifi hotspots in an urban environment. I argue that this research will have significant impact. For instance, clustering urban mobility data by speed would identify spatio-temporal cycling patterns and inform the city about the times and routes with the highest likelihood of collisions between cyclists and motorists, enabling solutions (e.g. cyclist-only lanes) at specific times of the day and the year.
我提出了一项研究计划,结合了我过去几年中工作的两个领域,即移动性数据分析和隐私保护技术。移动性数据是通过移动设备(例如手机,GPS,WIFI)来创建的数据,该数据将其存在时间戳(以及启用GPS的设备,其位置)使用天线,接收器和路由器创建的数据。流动性数据无处不在,其体积不断增长。它对于理解人类和动物行为的重要性至关重要,因此,对收集和探索此类数据的广泛应用具有一般兴趣,从交通和运输,生态学,流行病学到安全和安全。基本的活动能力数据概念是一种轨迹 - 每个点由地理空间坐标集和时间戳记组成。众所周知,人类流动性数据提出了巨大的隐私挑战,但我表明,船舶运动也适用,特别是对于较小的娱乐船和渔船。我列出了特定的研究任务,这些任务将共同提供以私人方式解决移动性数据的工具。这些任务还为与我一起工作的学生提供了逼真而有趣的主题。 Those tasks are: dividing trajectories into semantically meaningful parts (segmentation), prediction of the next point in a trajectory (next move prediction), segment classification, clustering of trajectories and use of clustering as a privacy-oriented data representation, detection of anomalous trajectories, linking and integration of extraneous data with mobility data, and privacy models conducive to the special characteristics of mobility data.**Exploring我的实验室与收集和拥有大型移动性数据集的公司建立了合作伙伴关系,我将重点关注两种主要数据类型:通过GPS样AIS(自动标识系统)平台获得世界海洋的船只轨道,以及在城市环境中留下WiFi Hotspots的人们的痕迹。我认为这项研究将产生重大影响。例如,按速度群集的城市流动性数据将确定时空循环模式,并将骑自行车者与驾车者之间碰撞可能性最高的时间和路线告知城市,从而在一天中和一年中的特定时间启用解决方案(例如,仅骑自行车的人)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matwin, Stan其他文献
Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity
- DOI:
10.1007/11766247_23 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0
- 作者:
Nadeau, David;Turney, Peter D.;Matwin, Stan - 通讯作者:
Matwin, Stan
RECURRENT NEURAL NETWORKS WITH STOCHASTIC LAYERS FOR ACOUSTIC NOVELTY DETECTION
- DOI:
10.1109/icassp.2019.8682901 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Duong Nguyen;Kirsebom, Oliver S.;Matwin, Stan - 通讯作者:
Matwin, Stan
deepBioWSD: effective deep neural word sense disambiguation of biomedical text data
- DOI:
10.1093/jamia/ocy189 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:6.4
- 作者:
Pesaranghader, Ahmad;Matwin, Stan;Pesaranghader, Ali - 通讯作者:
Pesaranghader, Ali
A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
- DOI:
10.1007/s10462-013-9400-4 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:12
- 作者:
Esmin, Ahmed A. A.;Coelho, Rodrigo A.;Matwin, Stan - 通讯作者:
Matwin, Stan
A new algorithm for reducing the workload of experts in performing systematic reviews
- DOI:
10.1136/jamia.2010.004325 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:6.4
- 作者:
Matwin, Stan;Kouznetsov, Alexandre;O'Blenis, Peter - 通讯作者:
O'Blenis, Peter
Matwin, Stan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matwin, Stan', 18)}}的其他基金
Interpretability for Machine Learning
机器学习的可解释性
- 批准号:
CRC-2019-00383 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Causality in Machine Learning
机器学习中的因果关系
- 批准号:
RGPIN-2022-03667 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Automated Monitoring of the Naval Information Space (AMNIS)
海军信息空间 (AMNIS) 自动监控
- 批准号:
550722-2020 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Alliance Grants
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
- 批准号:
RGPIN-2016-03913 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Interpretability For Machine Learning
机器学习的可解释性
- 批准号:
CRC-2019-00383 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Interpretability for Machine Learning
机器学习的可解释性
- 批准号:
CRC-2019-00383 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
- 批准号:
RGPIN-2016-03913 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Automated Monitoring of the Naval Information Space (AMNIS)
海军信息空间 (AMNIS) 自动监控
- 批准号:
550722-2020 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Alliance Grants
Interpretability for Machine Learning
机器学习的可解释性
- 批准号:
CRC-2019-00383 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
相似国自然基金
财富科技的监管挑战与监管设计:算法投资视角的研究
- 批准号:72303197
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
情感挑战数字表征模式挖掘与分析
- 批准号:62302494
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SMR#3841 高维统计分析研究的机遇和挑战
- 批准号:12381240133
- 批准年份:2023
- 资助金额:2.00 万元
- 项目类别:国际(地区)合作研究与交流项目
专题研讨类:超快化学面临的挑战和新机遇
- 批准号:22342007
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
随机驾驶行为下基于强化学习与启发式融合的自动驾驶挑战场景生成
- 批准号:52302504
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Tools to Address the Challenges of Preserving Privacy in Sharing and Analysis of Biomedical Data
应对生物医学数据共享和分析中保护隐私挑战的工具
- 批准号:
10708820 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Anticipating ethical challenges and disparities in the dissemination of novel neurotechnologies
预测新型神经技术传播中的伦理挑战和差异
- 批准号:
10448454 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Anticipating ethical challenges and disparities in the dissemination of novel neurotechnologies
预测新型神经技术传播中的伦理挑战和差异
- 批准号:
10612461 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
- 批准号:
RGPIN-2016-03913 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Anticipating ethical challenges and disparities in the dissemination of novel neurotechnologies
预测新型神经技术传播中的伦理挑战和差异
- 批准号:
10283140 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别: