Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
基本信息
- 批准号:RGPIN-2015-06630
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research in nanotechnology is moving from studying the unique properties of relatively isolated nanomaterial components to generating and studying nano-systems and nano-architectures with unique and in some cases counter-intuitive properties (e.g. negative index metamaterials). While the previous generation of components such as colloidal quantum dots and metal nanoparticles performed spectacularly in biomedical diagnostics and sensing more generally, the present generation of nano-architectures has the potential to meaningfully impact the global energy and emissions problems through the design of improved photovoltaics, thermophotovoltaics and catalysts. Such nano-architectures are most powerful when they combine two or more of the following components in an ordered fashion preferably with deterministic spatial organization: semiconductors, low-loss metals and pi-conjugated organic molecules. Towards this end, the Shankar group will use its expertise in one-dimensional (1-D) semiconducting nanomaterials and also build upon its strong track record in using 1-D nanomaterials in the active layer of devices such as photovoltaics, photocatalysts, thin film transistors and biosensors. ***1-D nanotube/nanopore/nanorod arrays will be used as a building block to synthesize artificially structured nanomaterials of greater complexity and enhanced optoelectronic functionality. The interaction of plasmonic, electronic and excitonic effects in such structures is phenomenologically rich and is only recently receiving the attention that it deserves. Such ordered hybrid nanoarchitectures that intelligently combine the above three components offer the tools to achieve the desired control over the activities of photons and electrons, be it through the improvement in absorption, manipulation of the optical absorption and luminescence, and enhancement of charge separation & charge transport. We further propose to study 1-D nanomaterials and hybrid nanoarchitectures containing them using a powerful suite of spectroscopic and transient techniques to probe their optoelectronic properties. The scientific goal of these studies is to gain a deeper understanding of the properties while the technological goal is to understand and overcome performance bottlenecks, and bridge the gap between material structure and device performance.****We shall continue efforts in advancing isolated nanomaterial components. We propose to do this by extending the frontiers of anodic synthesis of aligned nanotube/nanorod arrays to new classes of semiconductors and by unlocking the full potential of magnetic fields in electrochemical anodization.****Optoelectronic and photonic devices that involve the transport, dispersion and interconversion of light and charge, form the final goals of this research. Such devices are key to both the alternative energy and information technology industries.**
纳米技术的研究正在从研究相对孤立的纳米材料成分的独特特性转变为具有独特的纳米系统和纳米系统和纳米构造,在某些情况下具有相反的特性(例如,负指数质量材料)。 虽然上一代的成分,例如胶体量子点和金属纳米颗粒,在生物医学诊断中表现出色并更一般地传感,但现代的纳米构造物具有有意义地影响全球能量和排放问题,通过改善的光伏,热燃料,热燃料,热燃料,蛋白质和排放问题。当这种纳米构造以有序的方式与确定性空间组织结合以下两个或多个组件时,它们最强大:半导体,低损坏金属和PI偶联的有机分子。 为此,Shankar组将在一维(1-D)半导体纳米材料中使用其专业知识,并以其强大的往绩来基于在使用1-D纳米材料(如光伏电动机,光催化剂,光催化剂,薄膜透镜和生物传感器)中使用1-D纳米材料。 *** 1-D纳米管/纳米孔/纳米棒阵列将用作构建块,以合成具有更大复杂性和增强光电功能的人为结构的纳米材料。等离激子,电子和激子在这种结构中的相互作用在现象学上很富含,直到最近才受到应有的关注。这种有序的混合纳米结构智能地结合了上述三个组件,提供了实现对光子和电子活性的所需控制的工具,无论是通过改善吸收,光学吸收和发光的操纵,以及增强电荷分离和电荷运输的增强。 我们进一步建议使用功能强大的光谱和瞬态技术来研究包含它们的1-D纳米材料和杂化纳米结构,以探测其光电特性。这些研究的科学目标是对这些属性有更深入的了解,而技术目标是了解和克服性能瓶颈,并弥合物质结构和设备性能之间的差距。 我们建议通过扩大对齐纳米管/纳米棒阵列的阳极合成的边界来实现新的半导体,并解锁电化学阳极氧化中磁场的全部潜力。 这些设备既是替代能源和信息技术行业的关键。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shankar, Karthik其他文献
Zinc phthalocyanine conjugated cellulose nanocrystals for memory device applications
- DOI:
10.1088/1361-6528/ac2e78 - 发表时间:
2022-01-29 - 期刊:
- 影响因子:3.5
- 作者:
Chaulagain, Narendra;Alam, Kazi M.;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy
- DOI:
10.1016/j.carbpol.2020.116393 - 发表时间:
2020-10-15 - 期刊:
- 影响因子:11.2
- 作者:
Goswami, Ankur;Alam, Kazi M.;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Enhanced charge separation in g-C(3)N(4)-BiOI heterostructures for visible light driven photoelectrochemical water splitting.
- DOI:
10.1039/c8na00264a - 发表时间:
2019-04-09 - 期刊:
- 影响因子:4.7
- 作者:
Alam, Kazi M.;Kumar, Pawan;Kar, Piyush;Thakur, Ujwal K.;Zeng, Sheng;Cui, Kai;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Biodiagnostics Using Oriented and Aligned Inorganic Semiconductor Nanotubes and Nanowires
- DOI:
10.1166/jnn.2013.7771 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:0
- 作者:
Kar, Piyush;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Transparent Anodic TiO2 Nanotube Arrays on Plastic Substrates for Disposable Biosensors and Flexible Electronics
- DOI:
10.1166/jnn.2013.7409 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:0
- 作者:
Farsinezhad, Samira;Mohammadpour, Arash;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Shankar, Karthik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shankar, Karthik', 18)}}的其他基金
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Nanostructured ceramic coatings engineered for reduction of corrosion, erosion, fouling and viscous drag in industrial pipes and tubes
纳米结构陶瓷涂层旨在减少工业管道中的腐蚀、侵蚀、结垢和粘性阻力
- 批准号:
478987-2015 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Strategic Projects - Group
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
川藏铁路长大隧道段架设高速交流刚性网的弓网动力学建模及耦合平顺性研究
- 批准号:52367009
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
TiAl合金α→α2+γ相变过程及片层组织形成长大机制研究
- 批准号:52305379
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
长大字符串数据相似度智能搜索研究
- 批准号:62302180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于声聚并与水汽凝结的油性细颗粒长大机理及净化效率提升研究
- 批准号:52378103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
长大坡道下高速列车制动摩擦界面损伤机理及状态评估研究
- 批准号:52305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
High power nanowire green lasers monolithically grown on silicon: Bridging the green gap
在硅上单片生长的高功率纳米线绿光激光器:弥合绿光差距
- 批准号:
430413-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Strategic Projects - Group