Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
基本信息
- 批准号:RGPIN-2017-05420
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Context This research program aims at exploring new directions for the analysis of shapes in medical images. The current challenge resides in the huge variability of complex biological shapes, such as the surface of the brain. Their complexity directly impacts the performance of learning algorithms in medical image analysis. This indicates a crucial need to better exploit the nature of shapes, particularly when data is analyzed on them. Shape analysis in medical imaging is today, often based on extrinsic geometric information, for instance, derived from Euclidean coordinates. As a result, traditional approaches inexorably require costly non-linear shape normalization, up to hours of computation for aligning shapes. On the other side, the intrinsic nature of shapes is often over simplified in medical image analysis, if not ignored. For instance, brain surfaces are typically treated as simple spheres in surface-based methods, increasing computational burden, or even ignored in volumetric methods, leading to misaligned surface data. This severely limits studies in medical imaging where data resides on complex surfaces.******Research Directions and Methodology One promising avenue is to investigate shapes via spectral graph theory. This provides a foundation towards a truly intrinsic shape analysis, notably due to its invariance under isometry. The recent advances and the growing need to study surface data motivate the development of a new paradigm to perform statistics on complex biological shapes. To do so, I intend to develop three axes of research on spectral shape analysis: (i) shape representation, focused on harmonic shape modeling, (ii) shape statistics, focused on the learning of surface data, and (iii) shape dynamics, focused on motion of shapes. This program will first focus on the structural and functional variability of neuroimaging data, in order to discover the underlying mechanisms of neurodegenerative diseases. The long-term vision is to contribute towards a better use of medical data in learning algorithms by exploiting shape representations to detect biological abnormalities automatically.******Impact Outcomes are expected to have a high direct impact in medical imaging, notably for studying functional data in the brain and cardiac imaging. The spectral framework provides a new paradigm to perform statistics on complex biological shapes. The computational advantage is expected to bring faster and more precise tools for studying functional data, notably in neuroimaging, which crucially needs a geometry-aware statistical framework. This brings, therefore, a strong advantage to lead future studies in functional neuroimaging with high potentials to significantly scale up future studies. The spectral framework is also relevant in various other fields where data fundamentally lives on surfaces, including in computer vision and machine learning.
背景该研究计划旨在探索医学图像形状分析的新方向。当前的挑战在于复杂生物形状的巨大可变性,例如大脑表面。它们的复杂性直接影响医学图像分析中学习算法的性能。这表明迫切需要更好地利用形状的本质,特别是在对形状进行数据分析时。如今,医学成像中的形状分析通常基于外在几何信息,例如从欧几里得坐标导出的信息。因此,传统方法不可避免地需要昂贵的非线性形状标准化,需要长达数小时的计算来对齐形状。另一方面,在医学图像分析中,形状的内在本质即使不被忽视,也常常被过度简化。例如,在基于表面的方法中,大脑表面通常被视为简单的球体,这增加了计算负担,甚至在体积方法中被忽略,导致表面数据错位。这严重限制了数据驻留在复杂表面上的医学成像研究。******研究方向和方法一个有前途的途径是通过谱图理论研究形状。这为真正的内在形状分析奠定了基础,特别是由于其在等距下的不变性。研究表面数据的最新进展和日益增长的需求推动了一种新范式的开发,以对复杂的生物形状进行统计。为此,我打算发展光谱形状分析的三个研究方向:(i)形状表示,重点关注谐波形状建模,(ii)形状统计,重点关注表面数据的学习,以及(iii)形状动力学,专注于形状的运动。该项目将首先关注神经影像数据的结构和功能变异性,以发现神经退行性疾病的潜在机制。长期愿景是通过利用形状表示自动检测生物异常,为在学习算法中更好地利用医学数据做出贡献。******影响结果预计将对医学成像产生高度直接影响,特别是对于研究大脑和心脏成像中的功能数据。光谱框架提供了一种新的范例来对复杂的生物形状进行统计。计算优势预计将为研究功能数据带来更快、更精确的工具,特别是在神经成像领域,这迫切需要一个几何感知的统计框架。因此,这为引领功能神经影像学的未来研究带来了强大的优势,并且具有显着扩大未来研究规模的巨大潜力。光谱框架还与数据从根本上存在于表面上的其他各个领域相关,包括计算机视觉和机器学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lombaert, Herve其他文献
Adaptive Graph Convolution Pooling for Brain Surface Analysis
- DOI:
10.1007/978-3-030-20351-1_7 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Gopinath, Karthik;Desrosiers, Christian;Lombaert, Herve - 通讯作者:
Lombaert, Herve
Manifold-aware synthesis of high-resolution diffusion from structural imaging.
- DOI:
10.3389/fnimg.2022.930496 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anctil-Robitaille, Benoit;Theberge, Antoine;Jodoin, Pierre-Marc;Descoteaux, Maxime;Desrosiers, Christian;Lombaert, Herve - 通讯作者:
Lombaert, Herve
Diffeomorphic spectral matching of cortical surfaces.
- DOI:
10.1007/978-3-642-38868-2_32 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0
- 作者:
Lombaert, Herve;Sporring, Jon;Siddiqi, Kaleem - 通讯作者:
Siddiqi, Kaleem
State-of-the-art retinal vessel segmentation with minimalistic models.
- DOI:
10.1038/s41598-022-09675-y - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.6
- 作者:
Galdran, Adrian;Anjos, Andre;Dolz, Jose;Chakor, Hadi;Lombaert, Herve;Ben Ayed, Ismail - 通讯作者:
Ben Ayed, Ismail
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation
- DOI:
10.1016/j.media.2019.03.012 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:10.9
- 作者:
Gopinath, Karthik;Desrosiers, Christian;Lombaert, Herve - 通讯作者:
Lombaert, Herve
Lombaert, Herve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lombaert, Herve', 18)}}的其他基金
Shape Analysis in Medical Imaging
医学成像中的形状分析
- 批准号:
CRC-2017-00122 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Shape Analysis In Medical Imaging
医学成像中的形状分析
- 批准号:
CRC-2017-00122 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Shape Analysis in Medical Imaging
医学成像中的形状分析
- 批准号:
1000231973-2017 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Shape Analysis in Medical Imaging
医学成像中的形状分析
- 批准号:
1000231973-2017 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Shape Analysis in Medical Imaging*
医学成像中的形状分析*
- 批准号:
1000231973-2017 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于弱监督深度学习的三维模型多特征自适应形状分析方法研究
- 批准号:61872321
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
全正基造型方法及其应用研究
- 批准号:11761008
- 批准年份:2017
- 资助金额:29.0 万元
- 项目类别:地区科学基金项目
面向三维服装建模的形状分析与处理方法研究
- 批准号:61462051
- 批准年份:2014
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
混合形式B样条几何造型优化与形状调整研究
- 批准号:11026107
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
面向过程支持重用的同步分析建模与形状灵敏度分析方法
- 批准号:51075162
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
- 批准号:
10468820 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
- 批准号:
10309280 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Spectral Shape Modeling for Medical Image Analysis
用于医学图像分析的光谱形状建模
- 批准号:
RGPIN-2017-05420 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual