Efficient energy and information transduction in microscopic nonequilibrium systems
微观非平衡系统中的高效能量和信息传递
基本信息
- 批准号:RGPIN-2015-04003
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most fundamental physical principles states that disorder always increases, yet living things must maintain order to function effectively. Via constant input of high-energy molecules and output of low-energy waste, they stay far from the more disordered state known as equilibrium. ******Unfortunately, physical theories of biological systems have generally assumed that the system is at equilibrium, mainly because the mathematics is simpler. But in recent years, significant advances in nonequilibrium theory point to the possibility of general principles that characterize living systems. Such theoretical developments have improved our understanding of how a single molecule (e.g., a protein or DNA molecule) resists stretching. The theories are, however, still too simple to adequately describe more complex biological systems and more subtle interventions. ******I hypothesize that efficient energy usage and information processing provides a selective advantage, thereby leading to an evolutionary force to improve these properties in biological systems. Thus, through theoretical analysis of optimal energetic and information-theoretic efficiency in microscopic model systems far from equilibrium, I will formulate strong and testable predictions about the dynamical properties of biomolecular machines sculpted by evolution. ******To make this applicable to a wider range of biological phenomena, I will develop nonequilibrium theory that focuses on: the random jostling that microscopic objects constantly encounter from neighboring molecules; the fact that biological components are inextricably connected to many other things and must act appropriately in these interactions in order to function well; and the transduction of information and energy through changing numbers of proteins in a cell. This work will involve fundamental theory, exploration of simple models, more detailed numerical calculations on complex systems, and close collaboration with experimentalists to test the validity and utility of our theories. ******My research program, involving the training of several scientists in my group, will uncover rigorous physical constraints on how biological systems can behave given the operational imperatives they face, such as when biological systems are driven far from equilibrium. These experiments will help elucidate basic design principles for energetically-efficient biological function. Ultimately, we may obtain a better understanding of the goals of evolution and its physical constraints. This work will also aid the design of new molecular-sized devices to achieve technological goals such as sustainable energy harvesting, efficient information storage and manipulation, or targeted delivery of therapeutic agents.
最基本的物理原理之一指出,无序总是会增加,但生物必须维持秩序才能有效运作。通过不断输入高能分子和输出低能废物,它们远离称为平衡的更加无序的状态。 ******不幸的是,生物系统的物理理论通常假设系统处于平衡状态,主要是因为数学更简单。但近年来,非平衡理论的重大进展指出了表征生命系统的一般原理的可能性。这些理论发展提高了我们对单个分子(例如蛋白质或 DNA 分子)如何抵抗拉伸的理解。然而,这些理论仍然太简单,无法充分描述更复杂的生物系统和更微妙的干预措施。 ******我假设有效的能量利用和信息处理提供了选择性优势,从而导致了改善生物系统中这些特性的进化力量。因此,通过对远离平衡的微观模型系统中最佳能量和信息论效率的理论分析,我将对进化塑造的生物分子机器的动力学特性做出强有力的、可测试的预测。 ******为了使其适用于更广泛的生物现象,我将发展非平衡理论,重点关注:微观物体不断遭遇邻近分子的随机碰撞;事实上,生物成分与许多其他事物有着千丝万缕的联系,并且必须在这些相互作用中适当地发挥作用才能发挥良好作用;以及通过改变细胞中蛋白质数量来传导信息和能量。这项工作将涉及基础理论、简单模型的探索、复杂系统的更详细的数值计算,以及与实验学家的密切合作以测试我们理论的有效性和实用性。 ******我的研究计划包括对我小组中几位科学家的培训,将揭示生物系统在面临操作要求时如何表现的严格物理限制,例如当生物系统远离平衡时。这些实验将有助于阐明高能效生物功能的基本设计原理。最终,我们可能会更好地理解进化的目标及其物理限制。这项工作还将有助于设计新的分子大小的设备,以实现可持续的能量收集、有效的信息存储和操作或治疗剂的靶向输送等技术目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivak, David其他文献
Optical measurement of mechanical forces inside short DNA loops
- DOI:
10.1529/biophysj.107.114413 - 发表时间:
2008-03-15 - 期刊:
- 影响因子:3.4
- 作者:
Shroff, Hari;Sivak, David;Liphardt, Jan - 通讯作者:
Liphardt, Jan
Sivak, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivak, David', 18)}}的其他基金
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPIN-2020-04950 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonequilibrium Statistical Biophysics
非平衡统计生物物理学
- 批准号:
CRC-2020-00098 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPAS-2020-00062 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPAS-2020-00062 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPIN-2020-04950 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonequilibrium Statistical Biophysics
非平衡统计生物物理学
- 批准号:
CRC-2020-00098 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Nonequilibrium Statistical Biophysics
非平衡统计生物物理学
- 批准号:
1000230775-2015 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPIN-2020-04950 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonequilibrium free energy transduction in biomolecular machines
生物分子机器中的非平衡自由能量转导
- 批准号:
RGPAS-2020-00062 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Nonequilibrium Statistical Biophysics
非平衡统计生物物理学
- 批准号:
1000230775-2015 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
相似国自然基金
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
- 批准号:82373095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
山地社区公共空间驻留活力的时空分布特征与影响机制研究
- 批准号:52308007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光周期调控布氏田鼠精子活力的分子机制研究
- 批准号:32301302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫花苜蓿MsASMT调控种子活力的分子机制
- 批准号:32301480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
- 批准号:32372677
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Pushing the Boundaries of Classical and Quantum Information Processing Toward Enhanced Security and Energy-Efficient Reliability
突破经典和量子信息处理的界限,增强安全性和节能可靠性
- 批准号:
2112890 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Energy-efficient Information Flow Control for Secure IoT
用于安全物联网的节能信息流控制
- 批准号:
20K23336 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The Impact of Salad Bars on Dietary Consumption Patterns in Elementary School Students
沙拉吧对小学生饮食消费模式的影响
- 批准号:
10319968 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
The Impact of Salad Bars on Dietary Consumption Patterns in Elementary School Students
沙拉吧对小学生饮食消费模式的影响
- 批准号:
9753434 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Designing Energy Efficient Structures using Building Information Modeling (BIM) Coupled with Computational Fluid Dynamics (CFD)
使用建筑信息模型 (BIM) 结合计算流体动力学 (CFD) 设计节能结构
- 批准号:
542218-2019 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's