Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors

深度传感器网络中基于智能模型的自然步态运动跟踪

基本信息

  • 批准号:
    RGPIN-2019-06434
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Tracking human body by observing its motion patterns in a natural living environment is a fundamental research area with many potential applications. In the past few years, advancement and widespread availability of commodity depth sensors, integrated with cameras have been offering a non-wearable alternative. This research concerns with some aspects of tracking motion of people in a network of sensors located at their natural living environment. Most existing approaches for processing the sensed depth information are incorporating complete or partial 3D depth data. Fundamental to our approach is the intelligent utilization of a collection 2D scan planes of the 3D data as a part of motion and scene representation. As a part of this investigation, it is proposed to investigate methods for determining initial changes in the sensed information due to movements. This detection can be used to assign and schedule sensors in the network and plan paths for mobile sensors. Each of the 1D depth profile in the associated scan planes can be further analyzed using Fourier analysis for defining components of feature vectors for further classification. It is proposed to explore the development of a 2D scan plane planner based on an intelligent particle filter tracking framework. As a part of this estimator, models for the gait movement patterns and postures of the subject are to be incorporated. The model-based estimator compares the sensed feature vectors with stored features associated with a number measured scans and generated key graphical postures and kinematic chain models of various limbs. The kinematic chain model is constructed using hierarchical description of particle filter starting from the kinematics of the torso to more detailed kinematic model of the connected limbs. In this work, we propose to explore the incorporation of visual information of hands and head based on skin color. This additional information will assist in further localization of hand extremities within the depth data for cases when the hand is in contact with the body (torso) or with various other limbs or body parts. We propose to approximate the head orientation during the gait pattern or various activities based on the depth data and face placement. For the cases where body occlusion is inevitable from sensor due to the presence of furniture (such as during the sitting down and raising from a chair), it is proposed to incorporate depth information from 2D scans of the furniture for defining its various feature vectors. We will compare this information with models of the stored features of furniture associated with the living environment to determine both types, position, and orientation of the furniture in relation to the subject.
通过观察自然生活环境中的运动模式来跟踪人体是一个具有许多潜在应用的基础研究领域。在过去几年中,与相机集成的商品深度传感器的进步和广泛使用已经提供了一种非可穿戴替代方案。这项研究涉及在自然生活环境中的传感器网络中跟踪人们运动的某些方面。 大多数现有的处理感测深度信息的方法都合并完整或部分 3D 深度数据。我们方法的基础是智能利用 3D 数据的 2D 扫描平面集合作为运动和场景表示的一部分。作为本研究的一部分,建议研究用于确定由于运动而引起的感测信息的初始变化的方法。此检测可用于分配和调度网络中的传感器以及规划移动传感器的路径。可以使用傅立叶分析来进一步分析相关扫描平面中的每个一维深度剖面,以定义特征向量的分量以进行进一步分类。建议探索基于智能粒子滤波跟踪框架的二维扫描平面规划器的开发。作为该估计器的一部分,将纳入受试者的步态运动模式和姿势的模型。基于模型的估计器将感测到的特征向量与与多个测量扫描相关的存储特征进行比较,并生成关键图形姿势和各个肢体的运动链模型。运动链模型是使用粒子滤波器的分层描述构建的,从躯干的运动学到所连接肢体的更详细的运动学模型。在这项工作中,我们建议探索基于肤色的手和头部视觉信息的结合。当手与身体(躯干)或各种其他肢体或身体部位接触时,此附加信息将有助于在深度数据内进一步定位手肢。 我们建议根据深度数据和面部位置来近似步态模式或各种活动期间的头部方向。对于由于家具的存在而导致传感器不可避免地发生身体遮挡的情况(例如在坐下和从椅子上站起来时),建议结合家具的 2D 扫描的深度信息来定义其各种特征向量。我们将把这些信息与存储的与生活环境相关的家具特征的模型进行比较,以确定家具相对于主体的类型、位置和方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Payandeh, Shahram其他文献

Fuzzy set theory for performance evaluation in a surgical simulator
On the sensitivity analysis of camera calibration from images of spheres
Hand Motion and Posture Recognition in a Network of Calibrated Cameras
  • DOI:
    10.1155/2017/2162078
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Wang, Jingya;Payandeh, Shahram
  • 通讯作者:
    Payandeh, Shahram
A novel depth image analysis for sleep posture estimation
Clustering and Identification of key body extremities through topological analysis of multi-sensors 3D data
  • DOI:
    10.1007/s00371-021-02070-0
  • 发表时间:
    2021-02-17
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mohsin, Nasreen;Payandeh, Shahram
  • 通讯作者:
    Payandeh, Shahram

Payandeh, Shahram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Payandeh, Shahram', 18)}}的其他基金

Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
  • 批准号:
    RGPIN-2019-06434
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
  • 批准号:
    RGPIN-2019-06434
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
  • 批准号:
    RGPIN-2019-06434
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Kinematic Tracking and Monitoring of Human Movements in a Collaborative Network of Depth Sensors
深度传感器协作网络中人体运动的运动跟踪和监测研究
  • 批准号:
    RGPIN-2014-04160
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Kinematic Tracking and Monitoring of Human Movements in a Collaborative Network of Depth Sensors
深度传感器协作网络中人体运动的运动跟踪和监测研究
  • 批准号:
    RGPIN-2014-04160
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Kinematic Tracking and Monitoring of Human Movements in a Collaborative Network of Depth Sensors
深度传感器协作网络中人体运动的运动跟踪和监测研究
  • 批准号:
    RGPIN-2014-04160
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Kinematic Tracking and Monitoring of Human Movements in a Collaborative Network of Depth Sensors
深度传感器协作网络中人体运动的运动跟踪和监测研究
  • 批准号:
    RGPIN-2014-04160
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Design and study of tele-mobile platform for an existing elderly adult interaction system
现有老年人交互系统远程移动平台的设计与研究
  • 批准号:
    488440-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Study of Kinematic Tracking and Monitoring of Human Movements in a Collaborative Network of Depth Sensors
深度传感器协作网络中人体运动的运动跟踪和监测研究
  • 批准号:
    RGPIN-2014-04160
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Educational platform for network robotic application
网络机器人应用教育平台
  • 批准号:
    453775-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于COSIPY模型的天山冰川物质平衡模拟与重建研究
  • 批准号:
    42301168
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数字孪生的露头尺度无人机断裂识别、分析与追索智能模型构建方法研究
  • 批准号:
    42302336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自监督学习的脑电特征表达预训练模型研究
  • 批准号:
    62376098
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多尺度多模式成像探究耳鸣小鼠模型的听觉-边缘系统神经重塑机制
  • 批准号:
    82302284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度迁移学习与DNDC模型的黑土农田土壤碳储量估算研究
  • 批准号:
    42301074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neural Conversational Agent for Automated Weight Loss Counseling
用于自动减肥咨询的神经对话代理
  • 批准号:
    10668094
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Eradicating Misconceptions about Viruses using Multimodal Trace Data in an Intelligent Game-based Environment across Educational Contexts
在跨教育背景的智能游戏环境中使用多模式跟踪数据消除对病毒的误解
  • 批准号:
    10664776
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
TAIMWAS: A Trustworthy AI Model-based Intelligent Chronic Wound Analysis System
TAIMWAS:值得信赖的基于AI模型的智能慢性伤口分析系统
  • 批准号:
    10075117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant for R&D
Establishing an Artificially Intelligent Framework for Improving Therapeutic Alliance with Obese African American Youth and Caregivers through Multimodal Monitoring of Empathetic Accuracy and Interper
建立人工智能框架,通过共情准确性和 Interper 的多模式监测来改善肥胖非裔美国青年和护理人员的治疗联盟
  • 批准号:
    10710204
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Establishing an Artificially Intelligent Framework for Improving Therapeutic Alliance with Obese African American Youth and Caregivers through Multimodal Monitoring of Empathetic Accuracy and Interper
建立人工智能框架,通过共情准确性和 Interper 的多模式监测来改善肥胖非裔美国青年和护理人员的治疗联盟
  • 批准号:
    10595321
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了