Numerical simulations of uncertainty quantification and multiscale computation

不确定性量化和多尺度计算的数值模拟

基本信息

  • 批准号:
    RGPIN-2014-05664
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Mathematical models and computational techniques are very essential in solving complex problems in science and engineering. For most applications, numerical simulations are usually based on a deterministic formulation. However, in reality, uncertainties are present in one form or the other. Hence, to assess the reliability and accuracy of the numerical simulations, it is important to consider the uncertainty quantification so that the effect of uncertainty is taken into account. To incorporate uncertainty into a mathematical model, random variables or stochastic process must be considered. Hence, it is a challenging task to develop an efficient computational methodology. Recently, we have developed the stochastic collocation method and the stochastic normal form to study the nonlinear aeroelastic model. In this model uncertainties are introduced in the nonlinear coefficients in the structural term and also in the initial conditions. Particular attention is paid on the effect on the Hopf and secondary bifurcations in the presence of uncertainties. Our current objective is to develop efficient symplectic schemes for stochastic Hamiltonian systems and for stochastic partial differential equations. **Another topic to be studied in this proposal is the multiscale modeling and computation for three-dimensional composite materials. In recent years, tremendous progress has been reported in composite materials. The use of the composite materials offers the possibility of many new and exciting developments. For example, in aerospace engineering, an environmentally friendly and efficient aircraft can be designed using tougher and lighter materials; and a stronger structure with heat resistance materials could improve the safety of a spacecraft. However, it should be noted that conventional computational methodology may not be capable of dealing with problems arising from composite materials, which usually contain many different spatial scales. A direct numerical simulation to resolve all the fine scale features is impossible even by make use of supercomputers. Thus, an alternative approach such as the multiscale simulation comes in. The goal of the project is to develop reliable and robust mutliscale simulations for 3D composite materials in aerospace engineering applications. The mathematical formulation is based on a coupled thermoelastic system, which is capable of investigating the material deformations and the temperature variations in a composite structure. It is noted that a composite material is usually modeled as a matrix with specific inclusions or holes of several materials, and the inclusion/hole may have a hexahedral mesh or randomly distributed over a 3D unit volume. For the long-term goal, we plan to consider the uncertainty effect due to the random microstructure in the geometric model. Hence, the developed numerical simulation for composite materials include multiscale modelling and uncertainty quantification.**The project presented in this proposal is a challenging research work, but it will be of interest and benefit to many researchers and engineers in applied mathematics and engineering communities. The research will make an important contribution of the knowledge and technology transfer from academia to industry.
数学模型和计算技术对于解决科学和工程中的复杂问题非常重要。对于大多数应用,数值模拟通常基于确定性公式。然而,实际上,不确定性以一种或另一种形式存在。因此,为了评估数值模拟的可靠性和准确性,重要的是考虑不确定性量化,以便考虑不确定性的影响。为了将不确定性纳入数学模型,必须考虑随机变量或随机过程。因此,开发有效的计算方法是一项具有挑战性的任务。最近,我们发展了随机配置方法和随机范式来研究非线性气动弹性模型。在此模型中,结构项和初始条件的非线性系数中引入了不确定性。特别关注存在不确定性时对 Hopf 和二次分岔的影响。我们当前的目标是为随机哈密顿系统和随机偏微分方程开发有效的辛格式。 **本提案要研究的另一个主题是三维复合材料的多尺度建模和计算。近年来,复合材料领域取得了巨大进展。复合材料的使用提供了许多令人兴奋的新发展的可能性。例如,在航空航天工程中,可以使用更坚韧、更轻的材料来设计环保且高效的飞机;采用耐热材料的更坚固的结构可以提高航天器的安全性。然而,应该指出的是,传统的计算方法可能无法处理复合材料引起的问题,因为复合材料通常包含许多不同的空间尺度。即使使用超级计算机,直接数值模拟来解决所有精细尺度特征也是不可能的。因此,出现了多尺度模拟等替代方法。该项目的目标是为航空航天工程应用中的 3D 复合材料开发可靠且稳健的多尺度模拟。该数学公式基于耦合热弹性系统,能够研究复合结构中的材料变形和温度变化。值得注意的是,复合材料通常被建模为具有多种材料的特定夹杂物或孔洞的基体,并且夹杂物/孔洞可以具有六面体网格或随机分布在3D单位体积上。对于长期目标,我们计划考虑几何模型中随机微观结构带来的不确定性影响。因此,所开发的复合材料数值模拟包括多尺度建模和不确定性量化。**本提案中提出的项目是一项具有挑战性的研究工作,但它将引起应用数学和工程界的许多研究人员和工程师的兴趣和受益。该研究将为学术界向工业界的知识和技术转移做出重要贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wong, YauShu其他文献

Wong, YauShu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wong, YauShu', 18)}}的其他基金

Modelling, Computing and Data Applications for Real World Problems
现实世界问题的建模、计算和数据应用
  • 批准号:
    RGPIN-2019-04556
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling, Computing and Data Applications for Real World Problems
现实世界问题的建模、计算和数据应用
  • 批准号:
    RGPIN-2019-04556
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling, Computing and Data Applications for Real World Problems
现实世界问题的建模、计算和数据应用
  • 批准号:
    RGPIN-2019-04556
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling, Computing and Data Applications for Real World Problems
现实世界问题的建模、计算和数据应用
  • 批准号:
    RGPIN-2019-04556
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical simulations of uncertainty quantification and multiscale computation
不确定性量化和多尺度计算的数值模拟
  • 批准号:
    RGPIN-2014-05664
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Text recognition software development for legal services
法律服务文本识别软件开发
  • 批准号:
    520334-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Exploring a collaboration with Manifold Data Mining
探索与 Manifold Data Mining 的合作
  • 批准号:
    493549-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Connect Grants Level 1
Discovering useful information via mathematical model and data analysis
通过数学模型和数据分析发现有用的信息
  • 批准号:
    500358-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Numerical simulations of uncertainty quantification and multiscale computation
不确定性量化和多尺度计算的数值模拟
  • 批准号:
    RGPIN-2014-05664
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling and computational simulation for efficient sprinkler system
高效喷水灭火系统的数学建模与计算模拟
  • 批准号:
    486358-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program

相似国自然基金

考虑多重不确定性的机体/进排气稳健设计机制研究
  • 批准号:
    11902018
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
胶体作用下抗生素在不同质地土壤中的运移行为及数值模拟
  • 批准号:
    41807010
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
粉末级金属激光立体成形热-流-固耦合数值模拟
  • 批准号:
    51875023
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
镭同位素示踪海底地下水排泄的不确定性研究——地下水端元的选取
  • 批准号:
    41702266
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
考虑地质模型不确定性的渐进式滑坡变形演化机理研究
  • 批准号:
    41702294
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AGS-PRF: Physics-Constrained Machine Learning-Based Models for Climate Simulations with Data Assimilation and Uncertainty Quantification
AGS-PRF:基于物理约束的机器学习模型,用于具有数据同化和不确定性量化的气候模拟
  • 批准号:
    2218197
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Developing Simulations with Noise to Investigate Students' Understanding and Views of Measurement Uncertainty in Experimental Physics
开发噪声模拟以调查学生对实验物理中测量不确定性的理解和看法
  • 批准号:
    2142356
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
  • 批准号:
    2143625
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
  • 批准号:
    2120413
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Uncertainty quantification for first-principles simulations of thermoelectric properties
热电特性第一性原理模拟的不确定性量化
  • 批准号:
    2429988
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了