Dynamics of Functional Differential Equations with Applications to Biology and Ecology

泛函微分方程动力学及其在生物学和生态学中的应用

基本信息

  • 批准号:
    RGPIN-2015-05686
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Many biological and ecological processes involve time lags. For example, a predator needs time to convert its consumption of prey to its biomass; for many infectious diseases, time lags exist due to dispersal of populations and disease state changes. To model these time-lag involving processes, a natural choice is to use functional differential equations (i.e., differential equations subject to delays). In contrast to systems described by ordinary differential equations, the initial state of a functional differential equation is a function specified on an interval and the associated phase space is infinite dimensional. Since the resulting dynamical systems are infinite dimensional, the analysis of functional differential equations is extremely challenging, especially for equations with delay-dependent coefficients, nonlinearity and multiple state variables, which happen to be typical features of equations risen from biology and ecology.***In this proposed research, I aim to develop new methodologies and techniques to depict the global dynamic structure of certain nonlinear systems of functional differential equations arising from important applications in biology and ecology. In particular, I plan to formulate biological and ecological models by mainly using functional differential equations and to develop new methodologies, techniques and algorithms to study their short-time (transient) and long-time (asymptotic) behaviors. The focus will be on the effects of time delays involved in the dispersal of populations, in intraguild predation and in induced resistance of plants in responding to insect herbivore's attack on the dynamics. Theoretical and applicable results to be established in this proposed research will increase our understanding of both short-time and long-time qualitative behaviors in biological and ecological models with time delay and nonlinearity, and thereby, provide useful and valuable guidance and suggestions on controlling the spread of infectious diseases, preventing the extinction of endangered species, and maintaining sustainable development of ecosystems.****Anticipated newly developed theories, methodologies and techniques in this proposed research will highly enhance the advance of theoretical development in nonlinear functional differential equations and nonlinear dynamical systems. The established theoretical results will greatly improve our ability to deal with real world problems arising from biology and ecology and provide biologists and ecologists powerful tools to solve their specific problems that may be described by functional differential equations. This research will also provide excellent opportunities to train graduate students and postdoctoral researchers in dynamical systems and mathematical biology.*** *** **
许多生物学和生态过程都涉及时间滞后。例如,捕食者需要时间将其猎物消耗转换为生物量。对于许多传染病,由于种群的疾病和疾病状态的变化,时间滞后存在。为了对这些涉及过程的时间段进行建模,一种自然的选择是使用功能微分方程(即,差异方程式可能会延迟)。与普通微分方程描述的系统相反,功能微分方程的初始状态是在间隔上指定的函数,相关的相空间是无限的维度。由于所得的动态系统是无限尺寸,因此功能差分方程的分析极为挑战,尤其是对于具有延迟依赖的系数,非线性和多个状态变量的方程式,这些方程式恰好是从生物学和生态学的方程式典型特征。生物学和生态学。特别是,我计划通过主要使用功能微分方程来制定生物学和生态模型,并开发新的方法,技术和算法来研究其短期(瞬态)和长期(渐近)行为。重点将放在种群分散,内部预测以及植物抗药性响应昆虫食草动物对动态攻击时的抗药性的影响。在这项拟议的研究中待确定的理论和适用结果将增加我们对具有时间延迟和非线性的生物学和生态模型中短期和长期定性行为的理解,从而为控制感染性疾病的传播提供了有用的和宝贵的指导,并提供了有用的指导,并提供了危害系统的延伸,并阻止了濒临式的抗态性和维持灭绝的方法。在这项拟议的研究中,将在非线性功能微分方程和非线性动态系统中高度增强理论发展的进步。既定的理论结果将大大提高我们处理生物学和生态学引起的现实世界问题的能力,并为生物学家和生态学家提供强大的工具来解决其特定问题,这些问题可能由功能差分方程描述。这项研究还将为培训动态系统和数学生物学的研究生和博士后研究人员提供绝佳的机会。*******************************************

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Lin其他文献

Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles
氧化镧颗粒掺杂钼合金丝的显微组织及强化机制
Serum α-L-fucosidase activities are significantly increased in patients with preeclampsia
Solvothermal synthesis of ZnS nanorods and their pressure modulated photoluminescence spectra
ZnS纳米棒的溶剂热合成及其压力调制光致发光光谱
  • DOI:
    10.1088/0953-8984/19/42/425227
  • 发表时间:
    2007-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Lin;Li, Xianglin;Li, Zepeng;Yao, Mingguang;Li, Quanjun;Cui, Tian;Zou, Yonggang;Zou, Bo;Hou, Yuanyuan;Yu, Shidan;Liu, Bingbing;Zou, Guangtian
  • 通讯作者:
    Zou, Guangtian
Aging as a risk factor for cardiac surgery: Blunted ischemic-reperfusion stress response?
  • DOI:
    10.1111/jocs.15806
  • 发表时间:
    2021-07-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wang, Lin;Ren, Jun
  • 通讯作者:
    Ren, Jun
Identification of the prognostic value of immune gene signature and infiltrating immune cells for esophageal cancer patients
免疫基因特征和浸润免疫细胞对食管癌患者预后价值的鉴定
  • DOI:
    10.1016/j.intimp.2020.106795
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Wang, Lin;Wei, Qian;Zhao, Lin
  • 通讯作者:
    Zhao, Lin

Wang, Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Lin', 18)}}的其他基金

Modelling the effects of dispersal on metacommunity dynamics
模拟分散对元社区动态的影响
  • 批准号:
    RGPIN-2020-04143
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the effects of dispersal on metacommunity dynamics
模拟分散对元社区动态的影响
  • 批准号:
    RGPIN-2020-04143
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the effects of dispersal on metacommunity dynamics
模拟分散对元社区动态的影响
  • 批准号:
    RGPIN-2020-04143
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
  • 批准号:
    RGPIN-2015-05686
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
  • 批准号:
    RGPIN-2015-05686
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
  • 批准号:
    RGPIN-2015-05686
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
  • 批准号:
    RGPIN-2015-05686
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Transient and Asymptotic Dynamics of Some Evolution Equations from Ecology and Epidemiology
生态学和流行病学一些进化方程的瞬态和渐近动力学
  • 批准号:
    355880-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Transient and Asymptotic Dynamics of Some Evolution Equations from Ecology and Epidemiology
生态学和流行病学一些进化方程的瞬态和渐近动力学
  • 批准号:
    355880-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of evolution equations with applications in biology and ecology
进化方程动力学及其在生物学和生态学中的应用
  • 批准号:
    355880-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

曲面软薄膜微分生长/萎缩形貌演化力学建模与仿生功能结构设计
  • 批准号:
    12372096
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
面向超材料吸能及多功能设计的常微分方程驱动的新型混合拓扑优化方法研究
  • 批准号:
    12272200
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
面向超材料吸能及多功能设计的常微分方程驱动的新型混合拓扑优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
刻画神经元网络的功能连接及结构连接关系的数学理论和实际应用
  • 批准号:
    11671259
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
整合计算生物学解析光周期调控水稻开花基因Hd1功能转换的分子机制
  • 批准号:
    31671378
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating cytoskeletal dynamics in astrocyte structure and cocaine seeking behavior
研究星形胶质细胞结构和可卡因寻求行为的细胞骨架动力学
  • 批准号:
    10607513
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Investigating cytoskeletal dynamics in astrocyte structure and cocaine seeking behavior
研究星形胶质细胞结构和可卡因寻求行为的细胞骨架动力学
  • 批准号:
    10721883
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
  • 批准号:
    RGPIN-2016-06134
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Defining the role of compartment-specific dopamine dynamics in reinforcement learning
定义隔室特异性多巴胺动力学在强化学习中的作用
  • 批准号:
    10458064
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
  • 批准号:
    RGPIN-2016-06134
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了