A photonic link for silicon donor-based quantum technologies

用于基于硅供体的量子技术的光子链路

基本信息

  • 批准号:
    RGPIN-2016-05525
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Silicon transistors, the essential building block of most modern electronic devices, cannot shrink much further without being rendered inoperable by quantum mechanics. This classical-quantum threshold in fact presents a tremendous opportunity: if we harness quantum mechanics, rather than attempt to avoid it, we could build a quantum computer, which could accomplish certain computational tasks that would otherwise be forever impractical. Numerous fundamental calculations for drug simulations, big-data optimization, linear algebra, machine learning, and more, would become exponentially faster and therefore possible to solve on a realistic timescale.******One of the most promising candidate quantum bits (‘qubits') are made from donor impurities in silicon: the very atomic defects preventing the smallest transistors from working properly. I have shown that these qubits have the longest solid-state lifetimes (>3 hrs) and the best solid-state quantum control properties (>99.9% accuracy) ever demonstrated. These excellent individual qubits also have key commercial advantages: they are atomically identical, and can be fabricated using the same techniques used to build modern silicon transistors. This is important because quantum computers will still need on-chip integrated “classical” computing power to operate effectively.******What is urgently lacking is a reliable way to build connections, or ‘couplings', between these atomic quantum bits — we need to invent something equivalent to a quantum transistor in silicon. My proposed solution to accomplish this is radically new. I plan to link silicon atomic qubits by mediating their interactions via photon qubits. This can be done in a number of ways: one way is to swap the quantum information between the atomic and photonic qubits. This strategy will make use of photonic structures in silicon which can, for example, direct light along predetermined paths within a silicon device. These structures, which are very similar to the ones developed for fibre-optics devices, could reliably link multiple atomic qubits. The designs are simple and the experimental tolerances are large. The biggest risk to my research plan is its urgency — the first research group to demonstrate a quantum transistor in silicon would gain an insurmountable first-mover advantage.******The success of this research plan would launch silicon atomic qubits to the frontrunner position in the international race toward a large-scale quantum computer. The resulting revolution in computing power would have an enormous effect on the whole world, in ways we cannot yet predict. Imagine predicting the ubiquity of modern information technology based only on an evaluation of the first, huge, power-hungry, vacuum-tube-based digital computer in 1946. If quantum-information transistors can be developed for silicon, it will pave the way for silicon to revolutionize the information age once again.**
硅晶体管是大多数现代电子设备的基本组成部分,如果不被量子力学变得无法操作,就无法进一步缩小,这个经典量子阈值实际上提供了一个巨大的机会:如果我们利用量子力学,而不是试图避免它,我们可以建造一台量子计算机,它可以完成某些永远不切实际的计算任务,药物模拟、大数据优化、线性代数、机器学习等的许多基本计算将变得指数级更快,因此可以解决。在现实的****** 最有前途的候选量子位(“量子位”)是由硅中的施主杂质制成的:正是原子缺陷阻碍了最小的晶体管正常工作,我已经证明这些量子位具有最长的性能。这些出色的单个量子位还具有关键的商业优势:它们在原子上是相同的,并且可以使用相同的材​​料来制造。用于构建现代硅晶体管的技术很重要,因为量子计算机仍然需要片上集成的“经典”计算能力才能有效运行。******目前迫切缺乏的是建立连接的可靠方法,或者说“这些原子量子位之间的耦合——我们需要发明相当于硅中量子晶体管的东西,我计划通过光子量子位来连接硅原子量子位。完成于有多种方法:一种方法是在原子和光子量子位之间交换量子信息,该策略将利用硅中的光子结构,例如,它可以沿着硅器件内的预定路径引导光。与为光纤设备开发的非常相似,可以可靠地连接多个原子量子位,设计简单,实验容差很大,我的研究计划的最大风险是它的紧迫性——第一个研究小组展示了这种技术。硅中的量子晶体管将获得不可逾越的先发优势。********这项研究计划的成功将使硅原子量子比特在大规模量子计算机的国际竞赛中处于领先地位,从而引发一场革命。计算能力将对整个世界产生巨大影响,而我们目前还无法想象仅根据对第一台巨大、耗电、基于真空管的数字计算机的评估来预测现代信息技术的普及。 1946年。如果可以为硅开发出量子信息晶体管,这将为硅再次彻底改变信息时代铺平道路。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simmons, Stephanie其他文献

Bell's inequality violation with spins in silicon
  • DOI:
    10.1038/nnano.2015.262
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Dehollain, Juan P.;Simmons, Stephanie;Morello, Andrea
  • 通讯作者:
    Morello, Andrea
A single-atom quantum memory in silicon
  • DOI:
    10.1088/2058-9565/aa63a4
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Freer, Solomon;Simmons, Stephanie;Morello, Andrea
  • 通讯作者:
    Morello, Andrea
Optical observation of single spins in silicon
  • DOI:
    10.1038/s41586-022-04821-y
  • 发表时间:
    2022-07-14
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Higginbottom, Daniel B.;Kurkjian, Alexander T. K.;Simmons, Stephanie
  • 通讯作者:
    Simmons, Stephanie
Education and vulnerability: the role of schools in protecting young women and girls from HIV in southern Africa
  • DOI:
    10.1097/01.aids.0000341776.71253.04
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jukes, Matthew;Simmons, Stephanie;Bundy, Donald
  • 通讯作者:
    Bundy, Donald
The Emotional Eating Scale Adapted for Children and Adolescents (EES-C): development and preliminary validation of a short-form
  • DOI:
    10.1080/10640266.2019.1580124
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Limbers, Christine A.;Larson, Maddie;Simmons, Stephanie
  • 通讯作者:
    Simmons, Stephanie

Simmons, Stephanie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simmons, Stephanie', 18)}}的其他基金

Silicon Quantum Technologies
硅量子技术
  • 批准号:
    CRC-2021-00086
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs
Telecom colour centres in silicon: an all-silicon quantum computing and communications platform
硅中的电信色彩中心:全硅量子计算和通信平台
  • 批准号:
    RGPIN-2021-03863
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Telecom colour centres in silicon: an all-silicon quantum computing and communications platform
硅中的电信色彩中心:全硅量子计算和通信平台
  • 批准号:
    RGPIN-2021-03863
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon Quantum Technologies
硅量子技术
  • 批准号:
    CRC-2021-00086
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nanoelectronics
量子纳米电子学
  • 批准号:
    1000230838-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs
Quantum Nanoelectronics
量子纳米电子学
  • 批准号:
    1000230838-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nanoelectronics
量子纳米电子学
  • 批准号:
    1000230838-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs
Quantum Nanoelectronics
量子纳米电子学
  • 批准号:
    1000230838-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

铝硅合金析出相自主构筑铠装表面鲁棒性与超疏水机械耐久性关联机制
  • 批准号:
    52375183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电磁感应定向凝固多晶硅晶粒控制生长与位错运动关联性研究
  • 批准号:
    51962030
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
关联性硅基多界面卤素钙钛矿集成光伏器件的制备与量子输运性能的研究
  • 批准号:
    61874070
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
外延生长硅基二维材料的表面动力学与电子关联效应的原位显微能谱学研究
  • 批准号:
    11774039
  • 批准年份:
    2017
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目
质子滴线核26Pβ延迟双质子发射机制的实验研究
  • 批准号:
    U1632136
  • 批准年份:
    2016
  • 资助金额:
    68.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
  • 批准号:
    RGPIN-2016-05525
  • 财政年份:
    2016
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
  • 批准号:
    9098709
  • 财政年份:
    2015
  • 资助金额:
    $ 2.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了