A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
基本信息
- 批准号:RGPIN-2016-05525
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Silicon transistors, the essential building block of most modern electronic devices, cannot shrink much further without being rendered inoperable by quantum mechanics. This classical-quantum threshold in fact presents a tremendous opportunity: if we harness quantum mechanics, rather than attempt to avoid it, we could build a quantum computer, which could accomplish certain computational tasks that would otherwise be forever impractical. Numerous fundamental calculations for drug simulations, big-data optimization, linear algebra, machine learning, and more, would become exponentially faster and therefore possible to solve on a realistic timescale.******One of the most promising candidate quantum bits (‘qubits') are made from donor impurities in silicon: the very atomic defects preventing the smallest transistors from working properly. I have shown that these qubits have the longest solid-state lifetimes (>3 hrs) and the best solid-state quantum control properties (>99.9% accuracy) ever demonstrated. These excellent individual qubits also have key commercial advantages: they are atomically identical, and can be fabricated using the same techniques used to build modern silicon transistors. This is important because quantum computers will still need on-chip integrated “classical” computing power to operate effectively.******What is urgently lacking is a reliable way to build connections, or ‘couplings', between these atomic quantum bits — we need to invent something equivalent to a quantum transistor in silicon. My proposed solution to accomplish this is radically new. I plan to link silicon atomic qubits by mediating their interactions via photon qubits. This can be done in a number of ways: one way is to swap the quantum information between the atomic and photonic qubits. This strategy will make use of photonic structures in silicon which can, for example, direct light along predetermined paths within a silicon device. These structures, which are very similar to the ones developed for fibre-optics devices, could reliably link multiple atomic qubits. The designs are simple and the experimental tolerances are large. The biggest risk to my research plan is its urgency — the first research group to demonstrate a quantum transistor in silicon would gain an insurmountable first-mover advantage.******The success of this research plan would launch silicon atomic qubits to the frontrunner position in the international race toward a large-scale quantum computer. The resulting revolution in computing power would have an enormous effect on the whole world, in ways we cannot yet predict. Imagine predicting the ubiquity of modern information technology based only on an evaluation of the first, huge, power-hungry, vacuum-tube-based digital computer in 1946. If quantum-information transistors can be developed for silicon, it will pave the way for silicon to revolutionize the information age once again.**
硅晶体管是大多数现代电子设备的必不可少的基础,在不被量子机械无法操作的情况下无法进一步收缩。实际上,这个经典的量子阈值带来了一个巨大的机会:如果我们利用量子机械,而不是试图避免它,我们可以构建一台量子计算机,这些计算机可以完成某些否则将永远不切实际的计算任务。用于药物模拟,大数据优化,线性代数,机器学习等的许多基本计算将变得更快地变得更快,因此可以在现实的时间表上解决。我已经证明,这些量子位具有最长的固态寿命(> 3小时),并且表现出了最佳的固态量子控制特性(> 99.9%的精度)。这些出色的个人数量也具有关键的商业优势:它们在原子上是相同的,并且可以使用与建造现代硅晶体管相同的技术进行制造。这很重要,因为量子计算机仍然需要芯片集成的“经典”计算能力才能有效地操作。我提出的解决方案是从根本上新的。我计划通过光子Qubits介导其相互作用来链接硅原子量。这可以通过多种方式完成:一种方法是将量子信息交换原子量和光子量子位。该策略将利用硅中的光子结构,例如,可以在硅设备内的预定路径上直接照明。这些结构与用于纤维启发设备开发的结构非常相似,可以可靠地连接多个原子量。设计很简单,实验公差很大。我的研究计划的最大风险是紧迫性 - 第一个证明硅中的量子晶体管的研究小组将获得无法克服的第一步优势。所产生的计算能力革命将以我们无法预测的方式对整个世界产生增强的影响。想象一下,仅根据1946年对第一台,巨大的,渴望的,真空管的数字计算机的评估来预测现代信息技术的普遍存在。如果可以为硅开发量子信息晶体管,它将为硅的方式铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simmons, Stephanie其他文献
Bell's inequality violation with spins in silicon
- DOI:
10.1038/nnano.2015.262 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:38.3
- 作者:
Dehollain, Juan P.;Simmons, Stephanie;Morello, Andrea - 通讯作者:
Morello, Andrea
A single-atom quantum memory in silicon
- DOI:
10.1088/2058-9565/aa63a4 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:6.7
- 作者:
Freer, Solomon;Simmons, Stephanie;Morello, Andrea - 通讯作者:
Morello, Andrea
Optical observation of single spins in silicon
- DOI:
10.1038/s41586-022-04821-y - 发表时间:
2022-07-14 - 期刊:
- 影响因子:64.8
- 作者:
Higginbottom, Daniel B.;Kurkjian, Alexander T. K.;Simmons, Stephanie - 通讯作者:
Simmons, Stephanie
Education and vulnerability: the role of schools in protecting young women and girls from HIV in southern Africa
- DOI:
10.1097/01.aids.0000341776.71253.04 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:3.8
- 作者:
Jukes, Matthew;Simmons, Stephanie;Bundy, Donald - 通讯作者:
Bundy, Donald
The Emotional Eating Scale Adapted for Children and Adolescents (EES-C): development and preliminary validation of a short-form
- DOI:
10.1080/10640266.2019.1580124 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:3.3
- 作者:
Limbers, Christine A.;Larson, Maddie;Simmons, Stephanie - 通讯作者:
Simmons, Stephanie
Simmons, Stephanie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simmons, Stephanie', 18)}}的其他基金
Silicon Quantum Technologies
硅量子技术
- 批准号:
CRC-2021-00086 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Canada Research Chairs
Telecom colour centres in silicon: an all-silicon quantum computing and communications platform
硅中的电信色彩中心:全硅量子计算和通信平台
- 批准号:
RGPIN-2021-03863 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Telecom colour centres in silicon: an all-silicon quantum computing and communications platform
硅中的电信色彩中心:全硅量子计算和通信平台
- 批准号:
RGPIN-2021-03863 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Silicon Quantum Technologies
硅量子技术
- 批准号:
CRC-2021-00086 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Canada Research Chairs
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
硅负极锂离子电池力—化学耦合劣化与容量衰退的定量关联机制研究
- 批准号:12372173
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
铝硅合金析出相自主构筑铠装表面鲁棒性与超疏水机械耐久性关联机制
- 批准号:52375183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钙硼硅系玻璃析晶机制与生瓷带性能关联规律研究
- 批准号:52302023
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
电磁感应定向凝固多晶硅晶粒控制生长与位错运动关联性研究
- 批准号:51962030
- 批准年份:2019
- 资助金额:40 万元
- 项目类别:地区科学基金项目
关联性硅基多界面卤素钙钛矿集成光伏器件的制备与量子输运性能的研究
- 批准号:61874070
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A photonic link for silicon donor-based quantum technologies
用于基于硅供体的量子技术的光子链路
- 批准号:
RGPIN-2016-05525 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
- 批准号:
9098709 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别: