Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
基本信息
- 批准号:RGPIN-2018-06867
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program for many years has been in theoretical computer science and its mathematical and logical foundations. My work involves analyzing the mathematical models and the many formal logics related to modern programming language theory. We include such notions as higher-order logics, resource sensitive linear logics, as well as the algebraic and topological structure of proofs and networks of proofs. This leads to my current studies in the dynamics of proofs-as-programs, models of feedback, and the logical foundations of quantum computing and quantum measurement theory. A central tool in our work is category theory and categorical logic.******In this research proposal, I continue to extend my previous work in three interlocking themes. Theme 1 involves many-valued logics and their algebras, called MV algebras. These fascinating logics were developed by logicians during the 1920's. In the last 30 years, MV algebras were shown to have remarkable connections to several current research areas of mathematics, as well as to computer science and physics. In the 1990s, mathematical physicists working in quantum measurement and quantum probability theories developed algebras of quantum effects. Surprisingly, these effect algebras turn out to include MV algebras. My work (with colleagues in Edinburgh) develops a general representation and classification (or “coordinatization”) program for MV and Effect algebras, using certain semigroups arising from operator algebras. My students and I will continue the coordinatization program to classify MV algebras using semigroups common to both physics***and theoretical computer science, with applications to such areas as: infinite automata, probabilistic logics, and programming language semantics. Theme 2 studies partial feedback, including recursion and fixed-points in programming language theory. My students and I developed a general theory of partially traced categories (for analyzing feedback in linear logic proof theory), with many mathematical models. We continue to look for new models motivated by quantum information theory (e.g. in certain C*-algebras). Future directions include analysis of metric space models in the foundations of analog computing, studying feedback with delay, and analysis of MV-algebras with fixed-point operators (in Theme 1). Theme 3 is a long-term project. It studies new foundations of computability theory: Turing categories (by R. Cockett and P. Hofstra). A key feature will be using formal methods (in Coq) to formalize the relevant proofs. This is part of formalized mathematics. Theories studied will include computable functions from resource bounded logics, higher-order computation, and models arising from combinatory algebras in linear logic. Practical projects will include studies in formal security.
我的研究计划多年来一直在理论计算机及其数学和逻辑基础中。证据。 - 逻辑及其代数,称为MV代数,这些迷人的逻辑是由1920年代的逻辑学家开发的。量子测量和量子理论形成了量子效应的代数。 ***和理论上的计算机科学,适用于这样的领域:无限的自动机和编程语言语义。为了分析线性逻辑证明中的反馈),我们继续寻找量子信息理论的动机(例如,在某些C* - 代数中)。固定点运算符(主题1)。 ,高阶计算和由线性逻辑中的Allgebras产生的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott, Philip其他文献
Diagnosing limb paresis and paralysis in sheep
- DOI:
10.1136/inp.h5547 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:0.3
- 作者:
Crilly, James Patrick;Rzechorzek, Nina;Scott, Philip - 通讯作者:
Scott, Philip
A survey of secure middleware for the Internet of Things
- DOI:
10.7717/peerj-cs.114 - 发表时间:
2017-05-08 - 期刊:
- 影响因子:3.8
- 作者:
Fremantle, Paul;Scott, Philip - 通讯作者:
Scott, Philip
What are the important design features of personal health records to improve medication adherence for patients with long-term conditions? A systematic literature review
- DOI:
10.1136/bmjopen-2018-028628 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:2.9
- 作者:
Andrikopoulou, Elisavet;Scott, Philip;Good, Alice - 通讯作者:
Good, Alice
Federated Identity and Access Management for the Internet of Things
- DOI:
10.1109/siot.2014.8 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Fremantle, Paul;Aziz, Benjamin;Scott, Philip - 通讯作者:
Scott, Philip
Digital health and patient safety: Technology is not a magic wand
- DOI:
10.1177/1460458219876183 - 发表时间:
2019-10-04 - 期刊:
- 影响因子:3
- 作者:
Sujan, Mark;Scott, Philip;Cresswell, Kathrin - 通讯作者:
Cresswell, Kathrin
Scott, Philip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott, Philip', 18)}}的其他基金
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
- 批准号:
8544-2011 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
- 批准号:
8544-2011 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
- 批准号:
8544-2011 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
- 批准号:
8544-2011 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
- 批准号:
8544-2011 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of proofs, and semantics of computation
极化逻辑、证明几何和计算语义
- 批准号:
8544-2006 - 财政年份:2010
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Polarized logics, geometry of proofs, and semantics of computation
极化逻辑、证明几何和计算语义
- 批准号:
8544-2006 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
- 批准号:61771123
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Studies in many-valued logics, partial traces, and computability
多值逻辑、部分迹和可计算性研究
- 批准号:
RGPIN-2018-06867 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Substructural Logics and their Algebraic Structures
子结构逻辑及其代数结构
- 批准号:
13640109 - 财政年份:2001
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LOGIC OF ARGUMENTATION AND ARGUING AGENT SYSTEM
论证逻辑和论证代理系统
- 批准号:
13680437 - 财政年份:2001
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)