Evaluation of the Aeroplan distinction status program desirability

Aeroplan 杰出地位计划的可取性评估

基本信息

  • 批准号:
    529296-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The Aeroplan Distinction Status program was launched in 2014 by our partner Aimia Canada Inc. to give**further rewards and recognition to the program's most engaged and active members. Under that program,**members qualify for one of three tiers based on eligible mileage accumulation from the previous calendar year.**Each tier offers benefits such as rewards and access to promotions. Our partner wants to determine if the status**program has an influence on members earn behaviour, and if so, for what type of members. The difficulty in**this project is to detect specific changes in a time series that has a natural variability that may include**non-stationary components, trends and seasonal components. The detection of Earning Rate (ER) local changes**that are influenced by status can be regarded as a two-step procedure. First, one must detect local variability**changes in the ER time series. Second, on must show that the times of such changes coincide (i.e. are close to)**with the critical times associated with status qualification thresholds. To establish that such coincidences are**not accidental, they should be observed repeatedly for several critical times. Obtaining statistically significant**results may require the grouping of several members having similar ER behaviours. The project has two**objectives:**1) Detect local changes in the ER local variability via local statistical indicators and correlate them with**qualification threshold times. 2) Detect local changes in the ER local variability via deviations from best linear**prediction and correlate them with qualification threshold times.**We will achieve objective 1) by searching for coincidences between local statistical measures (to be**developed) and critical times associated with status qualification thresholds. We will achieve objective 2) by**first developing a linear predictor of the ER series, and then by examining the prediction deviation (prediction**minus actual value) for each ER series. This deviation should reveal changes in the ER variability that could be**indicative of behaviour change.
Aeroplan区别状态计划于2014年由我们的合作伙伴Aimia Canada Inc.启动,以给予**进一步的奖励和认可该计划最参与和活跃的成员。在该计划下,**成员根据上一个日历年的合格里程积累有资格获得三个层之一。我们的合作伙伴想确定状态**计划是否对成员赚取行为有影响,如果是,则对哪种类型的成员产生了影响。 **这个项目的困难是检测具有自然变异性的时间序列中的特定变化,该变化可能包括**非平稳组件,趋势和季节性组件。受状态影响的收入率(ER)局部变化的检测可以被视为两步程序。首先,必须检测局部变异性** ER时间序列的变化。其次,必须表明,这种变化的时间重合(即接近)**与与状态资格阈值相关的关键时间。为了确定这种巧合不是偶然的,应该在几个关键时期反复观察它们。获得具有统计学意义的结果可能需要将几个具有相似ER行为的成员分组。该项目有两个**目标:** 1)通过局部统计指标检测ER局部变异性的局部变化,并将其与**资格阈值时间相关联。 2)通过与最佳线性预测的偏差来检测ER局部变异性的局部变化,并将其与资格阈值时间相关联。**我们将实现目标1)通过搜索局部统计措施(已开发**)与状态资格阈值相关的局部统计指标(待制)之间的巧合。我们将通过**首先开发ER系列的线性预测因子,然后检查每个ER系列的预测偏差(预测**减去实际值)来实现目标2)。这种偏差应揭示ER变异性的变化,这可能**指示行为改变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saucier, Antoine其他文献

Saucier, Antoine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saucier, Antoine', 18)}}的其他基金

Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Front-end Signal Processing for Improved Automatic Speech Recognition
用于改进自动语音识别的前端信号处理
  • 批准号:
    522072-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了