Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
基本信息
- 批准号:RGPIN-2018-04044
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is an area of mathematics that interweaves ideas from several disciplines, including algebra, analysis, combinatorics, and mathematical physics, to study realizations (also known as representations) of abstract mathematical objects that parametrize symmetries. In many problems that emerge in dynamical systems and physics, one encounters continuous groups of symmetries, which are called Lie groups. Lie groups are objects that belong to differential geometry, but the study of their representations relies substantially on certain algebraic objects called Lie algebras. Representation theory of Lie groups and Lie algebras plays a distinguished role in harmonic analysis, number theory, algebraic combinatorics, and theoretical physics. ******In my research over the next five years, I aim to answer questions in representation theory of Lie groups and Lie algebras, and a generalization of Lie algebras which are called Lie superalgebras. These questions are closely related to the theory of symmetric polynomials. Symmetric polynomials, such as Jack and Macdonald polynomials and their deformations, occur frequently in representation theory. This has lead to remarkable interactions between representation theory and algebraic combinatorics, and the insight provided by each of these branches of mathematics has enriched the other one substantially. The goal of my proposed research is to shed more light on these interactions by focusing on the case of Lie superalgebras, and to establish new connections with other algebraic objects such as quantum groups. The passage from Lie algebras to Lie superalgebras results in many new challenges and technical difficulties, and tackling them requires novel ideas.******I also plan to continue my study of unitary representations of Lie groups using tools from analysis. These representations are realized on Hilbert spaces, and typically the underlying Lie algebra does not act on the entire representation space. In particular, canonical dense subspaces which carry an action of the Lie algebra, such as the space of smooth vectors, play a crucial role in the theory. In my research I will study representations of both finite and infinite dimensional Lie groups. The finite dimensional case includes real and p-adic semisimple Lie groups, and therefore the impact of my research will be in the theory of automorphic forms. In the infinite dimensional case, the groups under investigation include loop groups and the Virasoro group. One of the most important classes of representations of the latter groups is the class of unitary representations of positive energy. Therefore in the infinite dimensional case the impact of my research will be in mathematical physics.
表示论是数学的一个领域,它融合了代数、分析、组合学和数学物理等多个学科的思想,以研究参数化对称性的抽象数学对象的实现(也称为表示)。在动力系统和物理学中出现的许多问题中,人们都会遇到连续的对称群,称为李群。李群是属于微分几何的对象,但对其表示的研究基本上依赖于某些称为李代数的代数对象。李群和李代数的表示论在调和分析、数论、代数组合学和理论物理中发挥着杰出的作用。 ******在我未来五年的研究中,我的目标是回答李群和李代数的表示论问题,以及李代数(称为李超代数)的推广。这些问题与对称多项式理论密切相关。对称多项式,例如杰克多项式和麦克唐纳多项式及其变形,经常出现在表示论中。这导致了表示论和代数组合学之间显着的相互作用,并且数学的每个分支所提供的见解都极大地丰富了另一个分支。我提出的研究的目标是通过关注李超代数的情况来更多地了解这些相互作用,并与其他代数对象(例如量子群)建立新的联系。从李代数到李超代数的转变带来了许多新的挑战和技术困难,解决这些问题需要新颖的想法。******我还计划使用分析工具继续研究李群的酉表示。这些表示是在希尔伯特空间上实现的,并且通常底层李代数不会作用于整个表示空间。特别是,具有李代数作用的规范稠密子空间,例如光滑向量空间,在该理论中发挥着至关重要的作用。在我的研究中,我将研究有限维和无限维李群的表示。有限维情况包括实数和p进半单李群,因此我的研究的影响将在自守形式理论中。在无限维情况下,所研究的群包括环群和Virasoro群。后一组最重要的表征类别之一是正能量的单一表征类别。因此,在无限维的情况下,我的研究的影响将是在数学物理方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salmasian, Hadi其他文献
The Capelli eigenvalue problem for Lie superalgebras
李超代数的 Capelli 特征值问题
- DOI:
10.1007/s00209-019-02289-7 - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Sahi, Siddhartha;Salmasian, Hadi;Serganova, Vera - 通讯作者:
Serganova, Vera
Salmasian, Hadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salmasian, Hadi', 18)}}的其他基金
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional Lie theory and representation theory
无限维李理论和表示论
- 批准号:
355464-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional Lie theory and representation theory
无限维李理论和表示论
- 批准号:
355464-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional Lie theory and representation theory
无限维李理论和表示论
- 批准号:
355464-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional Lie theory and representation theory
无限维李理论和表示论
- 批准号:
355464-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional Lie theory and representation theory
无限维李理论和表示论
- 批准号:
355464-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
结合界面预压式复合粘结锚固抗剪连接组合梁的界面强化机制及疲劳性能研究
- 批准号:52378158
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高代价多目标组合优化问题的代理模型及演化算法研究
- 批准号:62306174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
内置GFRP管的薄壁不锈钢管混凝土组合柱压弯性能与设计方法研究
- 批准号:52308172
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑高温损伤作用的钢管混凝土组合框架倒塌灾变机理及评估方法
- 批准号:52368021
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Free probability: combinatorial and analytic aspects, and interactions with other notions of independence
自由概率:组合和分析方面,以及与其他独立概念的相互作用
- 批准号:
RGPIN-2017-04181 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Free probability: combinatorial and analytic aspects, and interactions with other notions of independence
自由概率:组合和分析方面,以及与其他独立概念的相互作用
- 批准号:
RGPIN-2017-04181 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual