Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
基本信息
- 批准号:RGPIN-2015-05606
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canada is one of the largest producers of hydro and wind energy in the world. Optimally designed marine and wind turbine blades can further increase the production of these sources of renewable energy. More than two hundred floods have occurred in Canada over the past century taking many lives and causing billions of dollars in damage. An accurate prediction of flood plains when rivers overflow may prevent the loss of lives and help protect Canadian homes and businesses. These are just two applications that benefit tremendously from computer simulation tools. The success of these simulation tools, however, depends on the implemented algorithms. In this project we will develop new algorithms for more efficient and more accurate simulation tools.******Recently we introduced a new class of higher-order accurate algorithms for fluid flows on domains with small deformations. This class has the potential of being more accurate and more efficient than many other numerical methods. Many flow simulations, however, require algorithms that can cope with fluid flows on domains with large deformations. Example of such large deformations include: topological changes in which the domain may split into several sub-domains (e.g. coalescence and break-up of bubbles in boiling processes) and flow around rotating components (e.g. in the design of marine or wind turbines). The overarching objective of the proposed research is to develop the methodology needed for simulating fluid flow on domains with large deformations, building upon our higher-order accurate algorithms.******The proposed research benefits Canada by developing algorithms for next generation simulation tools. These tools will enable simulation of a wide variety of flows for applications in industry, environment and society. These applications may include: increasing the production of renewable energy through the design of optimal marine and wind turbine blades; predicting flood plains in the event of rivers overflowing due to extensive rainfall or snow-melt run-off; and predicting blood flow in artificial heart valves. Furthermore, the proposed research will train highly qualified personnel with the critical skills needed to develop and implement accurate numerical methods. This skill-set is essential for software development in Canada as it is widely believed that higher-order numerical methods will soon become the standard in simulation software.
加拿大是这些可再生能源的最大生产者之一。溢出可能会从comulation工具中进行杂物。 *最近,我们引入了一类带有小变形的高苏尔拉术。大变形的大变形。在我们的订单准确的基础上,具有较大变形的域上的流体流。在行业,环境和社会中的应用。 l具有开发和实施准确的数值方法所需的关键技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rhebergen, Sander其他文献
In silico analysis of hypoxia activated prodrugs in combination with anti angiogenic therapy through nanocell delivery
- DOI:
10.1371/journal.pcbi.1007926 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:4.3
- 作者:
Meaney, Cameron;Rhebergen, Sander;Kohandel, Mohammad - 通讯作者:
Kohandel, Mohammad
Hybridizable discontinuous Galerkin methods for the coupled Stokes–Biot problem
耦合 Stokes Biot 问题的可杂交间断 Galerkin 方法
- DOI:
10.1016/j.camwa.2023.05.024 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Cesmelioglu, Aycil;Lee, Jeonghun J.;Rhebergen, Sander - 通讯作者:
Rhebergen, Sander
A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations
- DOI:
10.1016/j.jcp.2012.08.052 - 发表时间:
2013-01-15 - 期刊:
- 影响因子:4.1
- 作者:
Rhebergen, Sander;Cockburn, Bernardo;van der Vegt, Jaap J. W. - 通讯作者:
van der Vegt, Jaap J. W.
Rhebergen, Sander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rhebergen, Sander', 18)}}的其他基金
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Fully numerical method for divergent multi-loop Feynman integrals appearing in higher order radiative corrections
高阶辐射校正中发散多环费曼积分的全数值方法
- 批准号:
17K05428 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual