Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
基本信息
- 批准号:RGPIN-2018-05052
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Proposal consists of parts 1)-3) that deal respectively with three interrelated areas of statistics and probability theory that are listed in the title. It is based on recent advances made in these areas in the applicant's research publications.******Change-point problems arise in a large variety of sciences when detecting if a sequence of chronologically ordered data could be viewed as homogeneous in a stochastic sense. Testing for changes in the (theoretical) mean (average) of a data sequence is one basic situation to which other change-point problems can be reduced. Part 1) a) of Proposal is to deal with nonparametric tests for at most one such change when the data are stochastically independent and follow general enough conditions. This research will provide guidance to practitioners on the performance and use of the available tests for at most one change in the mean and will extend the type of such tests recently proposed by the applicant for multivariate and other kinds of data.******In linear errors-in-variables models (EIVM) two variables are linearly related and are observed with measurement errors that complicate statistical inference in these models. Part 1) b) of Proposal is to develop procedures for nonparametric detection of a possible change in the slope and intercept in linear EIVM's while collecting data from these models. The proposed change-point problems occur naturally in data analysis of numerous applications of EIVM's, which include virtually all research areas, but have not yet been studied.******Part 2) a) of Proposal intends to obtain the full, or at least a rather general partial, resolution of a conjecture on a characterization of the asymptotic normality property of the multivariate Student t-statistic. The Student t-statistic has played a central role in inferential statistics. Studying when it is asymptotically standard normal is important for various applications such as constructing approximate confidence intervals for a population mean from large samples of data.******The anticipated invariance principles for the multivariate Student (stochastic) process (a generalization of the multivariate Student t-statistic) of part 2) b) of Proposal will contribute to recent advances in limit theorems for self-normalized processes of probability theory and can become a key tool for developing nonparametric tests for a possible change in the mean in a sequence of some multivariate data.******For linear EIVM's under some new conditions, part 3) of Proposal is to obtain asymptotic results for inference from large samples of data with possibly infinite variances from these models. The results will be based on the least squares estimators from linear regression and invariance principles for self-normalized processes of independent random variables. They will lead to first time, easily available large-sample approximate confidence regions/intervals for the slope and intercept in such EIVM's.
本提案由 1)-3) 部分组成,分别涉及标题中列出的统计和概率论的三个相互关联的领域。它基于申请人的研究出版物中在这些领域取得的最新进展。******当检测按时间顺序排列的数据序列是否可以被视为随机随机序列时,各种科学中都会出现变点问题。感觉。测试数据序列的(理论)均值(平均值)的变化是可以减少其他变点问题的一种基本情况。 提案的第 1) a) 部分是在数据随机独立并遵循足够普遍的条件时处理最多一个此类变化的非参数检验。这项研究将为从业者提供有关最多均值一次变化的可用测试的性能和使用的指导,并将扩展申请人最近针对多变量和其他类型数据提出的此类测试的类型。 ***** *在线性变量误差模型 (EIVM) 中,两个变量是线性相关的,并且观察到的测量误差使这些模型中的统计推断变得复杂。提案的第 1) b) 部分是开发程序,用于在从这些模型收集数据的同时,对线性 EIVM 的斜率和截距可能发生的变化进行非参数检测。所提出的变点问题自然出现在 EIVM 的众多应用的数据分析中,这些应用几乎包括所有研究领域,但尚未进行研究。*****提案的第 2) a) 部分旨在获得完整的、或者至少是对多元学生 t 统计量的渐近正态性特征的猜想的相当普遍的部分解决。学生 t 统计量在推论统计中发挥了核心作用。研究何时渐近标准正态对于各种应用都很重要,例如根据大数据样本构建总体平均值的近似置信区间。******多元学生(随机)过程的预期不变性原理(广义提案第 2) b) 部分的多元学生 t 统计量将有助于概率论自归一化过程的极限定理的最新进展,并且可以成为开发非参数检验的关键工具,以解决可能发生的变化一些多元数据序列中的均值。*****对于一些新条件下的线性 EIVM,提案的第 3) 部分是从这些模型可能存在无限方差的大数据样本中获得用于推断的渐近结果。结果将基于线性回归的最小二乘估计量和独立随机变量自归一化过程的不变性原理。它们将首次为此类 EIVM 中的斜率和截距提供易于获得的大样本近似置信区域/区间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martsynyuk, Yuliya其他文献
Martsynyuk, Yuliya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martsynyuk, Yuliya', 18)}}的其他基金
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance principles and change-point analysis for error-in-variables models
变量误差模型的不变性原理和变点分析
- 批准号:
386751-2010 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance principles and change-point analysis for error-in-variables models
变量误差模型的不变性原理和变点分析
- 批准号:
386751-2010 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance principles and change-point analysis for error-in-variables models
变量误差模型的不变性原理和变点分析
- 批准号:
386751-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance principles and change-point analysis for error-in-variables models
变量误差模型的不变性原理和变点分析
- 批准号:
386751-2010 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance principles and change-point analysis for error-in-variables models
变量误差模型的不变性原理和变点分析
- 批准号:
386751-2010 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Invariance Principles via Studentization, Self-Normalization and Self-Randomization in Error-in-Variables Models.
通过变量误差模型中的学生化、自标准化和自随机化实现不变性原理。
- 批准号:
329529-2006 - 财政年份:2007
- 资助金额:
$ 1.46万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
血小板源PDGFB重塑胶原改变应力微环境促进脑胶质瘤恶性进展的机制研究
- 批准号:82303425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心-脑轴血流改变介导的神经网络重塑对主动脉瓣狭窄患者认知功能的调控机制研究
- 批准号:82371187
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
昼夜节律-食欲素通路在睡眠-觉醒行为改变致抑郁症状中的作用机制研究
- 批准号:82304182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
癫痫改变疑核内心脏迷走神经电生理特性进而影响心率变异性的机制研究
- 批准号:32360220
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric bayesian inference and weighted bootstrap/change point analysis with non-guassian limits
非参数贝叶斯推理和具有非高斯极限的加权引导/变化点分析
- 批准号:
203276-2002 - 财政年份:2006
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual