Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
基本信息
- 批准号:435967-2013
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Constraint solvers, programs that automatically solve mathematical constraints, are used in myriad applications in engineering and science. Solvers can be likened to swiss-army knives, used in applications such as planning a robot's movement, configuring a car or automatically finding bugs in software. Engineers model their problem using mathematical constraints, and then use solvers to automatically solve them. As little as a decade ago, scalable automatic bug-finding of commercial software like word processors and operating systems was considered practically infeasible. Thanks to impressive gains in solver performance (due to many researchers including myself), not only has automatic bug-finding become feasible but is mandatory in companies like Microsoft. While the gains to-date are important, the demand for ever-more powerful and expressive solvers continues to grow unabated as engineers tackle even harder applications such as software synthesis. Hence, I propose a long-term research program to develop new solver techniques that are orders of magnitude faster and more expressive than today's, aimed at software engineering tools for software reliability and security.** More precisely, my research program has the following three thrusts: i) I will explore new techniques based on machine learning (ML). There has been a veritable revolution in ML theory and techniques. We can use ML and stochastic inference techniques to learn subtle meta-level patterns in large constraints that enable faster solving (similar to how humans identify deep concepts from data), ii) techniques that leverage ubiquitous and cheap multi-core processors to build scalable parallel solvers, and iii) solver techniques that leverage domain-specific knowledge as keys to unlock solutions to constraints. The proposed research will have deep fundamental scientific, technical, and commercial impact. The foundational results will provide theoretical underpinning for solver heuristics through ideas from parametric complexity and ML. The technical and commercial impact will be a set of new scalable and extensible solvers which have the potential to transform software reliability and security.**************************************************************
约束求解器是自动解决数学约束的程序,用于工程和科学的众多应用。可以将求解器比作瑞士军刀,这些刀具用于诸如计划机器人运动,配置汽车或在软件中自动查找错误之类的应用。工程师使用数学约束对其问题进行建模,然后使用求解器自动求解它们。大约十年前,文字处理器和操作系统等商业软件的可扩展自动发现实际上是不可行的。得益于求解器绩效的令人印象深刻的收益(由于我包括我在内的许多研究人员),不仅可以自动发现发现是可行的,而且在Microsoft等公司中是必不可少的。尽管迄今为止的收益至关重要,但随着工程师处理诸如软件合成之类的更艰难的应用程序,对越来越强大且表现力的求解器的需求持续不断。因此,我提出了一项长期研究计划,旨在开发新的求解器技术,该技术比当今更快,更具表现力的订单,旨在用于软件可靠性和安全性的软件工程工具。**更确切地说,我的研究计划具有以下三个推力:i)我将基于机器学习(ML)探索新技术。 ML理论和技术有一场名副其实的革命。我们可以使用ML和随机推理技术在很大的约束下学习微妙的元级模式,这些模式可以更快地解决(类似于人类从数据中识别深度概念),ii)ii)利用无处不在且廉价的多核处理器来构建可扩展的平行的技术求解器和iii)求解器技术利用特定领域的知识作为解锁约束解决方案的关键。拟议的研究将具有深厚的基本科学,技术和商业影响。基本结果将通过参数复杂性和ML的思想为求解器启发式法提供理论基础。技术和商业影响将是一组新的可扩展和可扩展的求解器,有可能改变软件可靠性和安全性。************************************************************************* ****************************************
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh, Vijay其他文献
Taint-based Directed Whitebox Fuzzing
- DOI:
10.1109/icse.2009.5070546 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:0
- 作者:
Ganesh, Vijay;Leek, Tim;Rinard, Martin - 通讯作者:
Rinard, Martin
Z3str3: A String Solver with Theory-aware Heuristics
- DOI:
10.23919/fmcad.2017.8102241 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:0
- 作者:
Berzish, Murphy;Ganesh, Vijay;Zheng, Yunhui - 通讯作者:
Zheng, Yunhui
EXE: Automatically Generating Inputs of Death
- DOI:
10.1145/1455518.1455522 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:0
- 作者:
Cadar, Cristian;Ganesh, Vijay;Engler, Dawson R. - 通讯作者:
Engler, Dawson R.
Word equations with length constraints: whats decidable?
- DOI:
10.1007/978-3-642-39611-3_21 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0
- 作者:
Ganesh, Vijay;Minnes, Mia;Rinard, Martin - 通讯作者:
Rinard, Martin
Learning Rate Based Branching Heuristic for SAT Solvers
- DOI:
10.1007/978-3-319-40970-2_9 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:0
- 作者:
Liang, Jia Hui;Ganesh, Vijay;Czarnecki, Krzysztof - 通讯作者:
Czarnecki, Krzysztof
Ganesh, Vijay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh, Vijay', 18)}}的其他基金
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
- 批准号:
RGPIN-2020-05106 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
- 批准号:
RGPIN-2020-05106 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
- 批准号:
RGPIN-2020-05106 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向IPv6下一代互联网的网络空间基础资源测量关键技术研究
- 批准号:62302253
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新一代地下工程原位岩体强度建构方法基础研究
- 批准号:52334004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于从头设计蛋白质的新一代CAR-T免疫疗法的研发
- 批准号:32370989
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Next Generation Fusion Reactor Design: Existence and Symmetry of Magnetofluidostatic Equilibria in Bounded Domains
下一代聚变反应堆设计:有界域中磁流体静力平衡的存在性和对称性
- 批准号:
21K13851 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
- 批准号:
435967-2013 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Exploring the roles of acquired immunity and functional constraint in sculpting malaria antigenic diversity in a longitudinal cohort
探索获得性免疫和功能限制在纵向队列中塑造疟疾抗原多样性中的作用
- 批准号:
9789830 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Exploring the roles of acquired immunity and functional constraint in sculpting malaria antigenic diversity in a longitudinal cohort
探索获得性免疫和功能限制在纵向队列中塑造疟疾抗原多样性中的作用
- 批准号:
10465075 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Exploring the roles of acquired immunity and functional constraint in sculpting malaria antigenic diversity in a longitudinal cohort
探索获得性免疫和功能限制在纵向队列中塑造疟疾抗原多样性中的作用
- 批准号:
10227974 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别: