Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries********
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造********
基本信息
- 批准号:521217-2018
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Li-ion batteries (LIBs) are the "invisible" technology that enabled the tremendous proliferation of mobile electronics and more recently the commercialization of electric vehicles. Additionally, LIBs find increasing use in storage of electricity generated from intermitting renewable sources like solar. These batteries however suffer from an inherent safety vulnerability due to the use of flammable organic solvent electrolytes hence some recent spectacular catastrophic incidents with smart phones, cars and even airplanes. At the same time the energy density of current state LIBs is rather limited to meet the demand for more packaged power. It is the energy density of a battery pack for example that determines the driving range of an electric car before it requires recharging. While we can make these battery packs bigger and bigger this is rather counterproductive because of cost and weight/volume hence we need to develop new generation batteries that will be safe and with high energy density at reasonable cost. In this context, it is widely accepted that building solid-state lithium batteries incorporating a solid electrolyte, Li metal as anode, and a high-voltage cathode by far offers the best option to achieve this goal. Such development however is hampered by a number of challenges as are the design of a solid electrolyte that can have good ionic conductivity at room-T and low resistance at the interface with the Li metal anode and the cathode. Another big challenge is to prevent the Li metal anode for growing so-called dendrites (sort of tree-like extensions) that can lead to battery failure by penetrating through the electrolyte. But solving these problems has to be done in a way that allows for scalable manufacturing at competitive cost. To this end our team in collaboration with Hydro-Quebec, a world leader in LIB R&D, proposes to design and develop a new composite electrolyte made of a porous ceramic framework filled with electrochemically stable conducting polymer and interfaced with a novel nano engineered anode and a high-voltage cathode. The proposed research constitutes an original approach with great innovative potential for major technological breakthroughs leading to advanced manufacturing activity in a fast growing market.********
锂离子电池(LIBS)是一种“无形”技术,它使移动电子设备的巨大扩散以及最近的电动汽车商业化。此外,Libs发现了越来越多的用途来存储来自太阳能等可再生能源产生的电力。然而,由于使用易燃有机溶剂电解质,这些电池遭受了固有的安全脆弱性,因此最近发生了一些智能手机,汽车甚至飞机的巨大灾难性事件。同时,当前状态LIB的能量密度相当有限,无法满足对更多包装功率的需求。例如,电池组的能量密度可以确定电动汽车需要充电之前的驾驶范围。尽管我们可以使这些电池组变得越来越大,但由于成本和重量/音量,这是适得其反的,因此我们需要开发新一代电池,这些电池将是安全的,并且以合理的成本具有高能密度。在这种情况下,人们普遍认为,建造固态锂电池,其中包含固体电解质,Li金属作为阳极,而高压阴极到目前为止为实现这一目标提供了最佳选择。然而,这种开发受到许多挑战的阻碍,固体电解质的设计也可以在房间T处具有良好的离子电导率,并且在与Li金属阳极和阴极的界面处的电阻较低。另一个很大的挑战是防止Li金属阳极生长所谓的树突(类似树状的延伸),该树枝状阳极通过穿透电解质穿透会导致电池故障。但是,解决这些问题必须以允许以竞争成本进行可扩展制造的方式完成。为此,我们的团队与LIB R&D的全球领导者Hydro-Quebec合作,建议设计和开发由多孔陶瓷框架制成的新型复合电解质,该框架填充了电化学稳定的导电聚合物,并与新颖的Nano Engineered阳极和一个新颖高压阴极。拟议的研究构成了一种原始方法,具有重大技术突破的巨大创新潜力,从而在快速增长的市场中进行了高级制造活动。**********
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Demopoulos, George其他文献
Demopoulos, George的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Demopoulos, George', 18)}}的其他基金
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2022-03978 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2017-04664 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2017-04664 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造
- 批准号:
521217-2018 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Strategic Projects - Group
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2017-04664 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造
- 批准号:
521217-2018 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Strategic Projects - Group
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2017-04664 - 财政年份:2018
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Development of light-chargeable lithium ion battery devices
光充电锂离子电池装置的开发
- 批准号:
493929-2016 - 财政年份:2018
- 资助金额:
$ 14.1万 - 项目类别:
Strategic Projects - Group
Advanced environmental and energy material processing
先进环保与能源材料加工
- 批准号:
RGPIN-2017-04664 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Development of light-chargeable lithium ion battery devices
光充电锂离子电池装置的开发
- 批准号:
493929-2016 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Strategic Projects - Group
相似国自然基金
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印支架联合纳米药物复合糖肽水凝胶治疗关节炎
- 批准号:82302702
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
- 批准号:
10510946 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
- 批准号:
10688234 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Development of hybrid virtual medical OJT technology by combining mixed reality technology and medical 3D modeling technology
混合现实技术与医学3D建模技术相结合开发混合虚拟医疗OJT技术
- 批准号:
21H00894 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造
- 批准号:
521217-2018 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Strategic Projects - Group