Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform

等离激元核壳发光纳米粒子:自支撑传感平台

基本信息

  • 批准号:
    RGPIN-2015-06468
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The confinement of electromagnetic fields within metallic nanoparticles is at the origin of the optical phenomenon known as localized surface plasmon resonance (LSPR). This confinement is associated with large enhancements in local field intensity, which lead in turn to significant increases in the quantum yield and radiative rates of fluorescent species placed close to the metal surface. Furthermore, one can take advantage of the LSPR frequency's dependence on the composition, geometry, size and dielectric environment of metallic nanoparticles to design optimal nanostructures able to enhance the emission intensity of fluorophores across the spectrum from UV to the near infrared (NIR). ***A significant reduction of self-quenching (i.e. signal losses occurring between neighboring fluorophores) and an  enhancement of detection sensitivity and photostability can be obtained with core-shell nanoparticles composed of a nanometer-size silver core coated by multiple layers of silica. By careful control of the spacing between the core and fluorophores arranged in concentric layers, these nanostructures can be used to enhance Förster resonant energy transfer (FRET) efficiency and range between donor-acceptor pairs localized on these multilayer composite NPs. We recently demonstrated the use of these nanoprobes as plasmonic enhancers for weakly fluorescent analytes, for the quantitative detection of specific genes at the trace level and for photostable imaging of physiological ions near cellular membranes.****These multilayer core-shell nanoparticles present many of the features required of an ideal self-supported sensing platform: they offer high optical detection sensitivity, excellent chemical and photophysical stability, high dispersability in water, and facile surface functionalization. Furthermore, their mobility is an asset for probing the contents of extended sample volumes in biosensing applications or for functional cell imaging work. In this research program, we will design novel multilayer core-shell fluorescent nanoarchitectures that maximize plasmonic enhancement of luminescence and FRET, investigate their photophysical characteristics, and develop them into molecular sensing nanostructures for the sensitive detection of trace amounts of genes, biomarkers, toxins, pathogens, tumor cells, etc. and other applications in the fields of analytical chemistry, materials science, plasmonics, photonics and biotechnology.**
金属纳米粒子内电磁场的限制是被称为局域表面等离子体共振(LSPR)的光学现象的根源,这种限制与局部场强度的大幅增强相关,从而导致量子产率和量子产率的显着增加。此外,人们可以利用局域表面等离子体共振频率对金属纳米粒子的成分、几何形状、尺寸和介电环境的依赖性来设计最佳的辐射率。纳米结构能够增强从紫外到近红外 (NIR) 光谱范围内荧光团的发射强度​*** 显着减少自猝灭(即相邻荧光团之间发生的信号损失)并提高检测灵敏度和光稳定性。通过仔细控制核与银之间的间距,可以得到由多层二氧化硅包覆的纳米级银核组成的核-壳纳米粒子。荧光团排列在同心层中,这些纳米结构可用于增强福斯特共振能量转移 (FRET) 效率和这些多层复合纳米粒子上供体-受体对之间的范围,我们最近演示了这些纳米探针作为弱荧光分析物的等离子体增强剂的用途。 ,用于痕量水平上特定基因的定量检测以及细胞膜附近生理离子的光稳定性成像。****这些多层核-壳纳米粒子呈现理想的自支撑传感平台所需的许多功能:它们具有高光学检测灵敏度、优异的化学和光物理稳定性、在水中的高分散性以及易于表面功能化。此外,它们的流动性是探测扩展内容的资产在本研究项目中,我们将设计新型多层核壳荧光纳米结构,最大限度地提高发光和 FRET 的等离激元增强,研究其光物理特性,并将其开发为分子。传感纳米结构,用于灵敏检测痕量基因、生物标记物、毒素、病原体、肿瘤细胞等,以及分析化学、材料科学、等离子学、光子学和生物技术领域的其他应用。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boudreau, Denis其他文献

Acting as a Molecular Tailor: Dye Structural Modifications for Improved Sensitivity toward Lysophosphatidic Acids Sensing
充当分子裁缝:染料结构修饰以提高溶血磷脂酸传感的灵敏度
  • DOI:
    10.1021/acsomega.2c06420
  • 发表时间:
    2023-01-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Fontaine, Nicolas;Harter, Lara;Marette, Andre;Boudreau, Denis
  • 通讯作者:
    Boudreau, Denis
Metal-Enhanced Hg2+-Responsive Fluorescent Nanoprobes: From Morphological Design to Application to Natural Waters
金属增强 Hg2 响应荧光纳米探针:从形态设计到在天然水中的应用
  • DOI:
    10.1021/acsomega.2c02985
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Picard-Lafond, Audrey;Lariviere, Dominic;Boudreau, Denis
  • 通讯作者:
    Boudreau, Denis
Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach
通过还原辅助电偶置换方法增强对银金空心纳米颗粒等离子体特性的控制
  • DOI:
    10.1039/c8ra09364d
  • 发表时间:
    2018-12-19
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Daniel, Josee R.;McCarthy, Lauren A.;Ringe, Emilie;Boudreau, Denis
  • 通讯作者:
    Boudreau, Denis
Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods
空心银金纳米棒的可逆形状和等离子体调谐
  • DOI:
    10.1021/acs.nanolett.6b02946
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yazdi, Sadegh;Daniel, Josée R.;Large, Nicolas;Schatz, George C.;Boudreau, Denis;Ringe, Emilie
  • 通讯作者:
    Ringe, Emilie
Label-Free SERS for Rapid Differentiation of SARS-CoV-2-Induced Serum Metabolic Profiles in Non-Hospitalized Adults
无标记 SERS 用于快速区分非住院成人中 SARS-CoV-2 诱导的血清代谢特征
  • DOI:
    10.1021/acs.analchem.2c04514
  • 发表时间:
    2023-02-21
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Chisanga, Malama;Williams, Hannah;Boudreau, Denis;Pelletier, Joelle N.;Trottier, Sylvie;Masson, Jean-Francois
  • 通讯作者:
    Masson, Jean-Francois

Boudreau, Denis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boudreau, Denis', 18)}}的其他基金

Influence des facteurs abiotiques sur la phénologie et l'activité des diptères d'intérêt médico-légale
对现象学和生物活性的影响
  • 批准号:
    555512-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Influence des facteurs abiotiques sur la phénologie et l'activité des diptères d'intérêt médico-légale
对现象学和生物活性的影响
  • 批准号:
    555512-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Fabrication method for miniaturized imaging gradient index lenses
一种小型化成像梯度折射率透镜的制作方法
  • 批准号:
    507486-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Plus Grants Program
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Fabrication method for miniaturized imaging gradient index lenses
一种小型化成像梯度折射率透镜的制作方法
  • 批准号:
    507486-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Plus Grants Program
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

核壳结构催化剂的构筑调控及强化等离子体催化氨分解制氢的机理研究
  • 批准号:
    52371326
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
等离子体作用下螺旋碳化硅-石墨烯核壳纳米纤维构建技术与材料电磁响应机制研究
  • 批准号:
    11975124
  • 批准年份:
    2019
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目
全金属Ag@Au@M(M=Pd,Pt)等离子体光催化材料的制备及其催化机理的单颗粒光谱研究
  • 批准号:
    21802087
  • 批准年份:
    2018
  • 资助金额:
    27.5 万元
  • 项目类别:
    青年科学基金项目
用于吸附-低温等离子体催化降解VOCs的锰掺杂核壳结构复合分子筛双功能材料的构建及性能
  • 批准号:
    51878338
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于表面等离子体共振效应的双金属核壳体系的构建及其催化CO2转化研究
  • 批准号:
    21872104
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Market Study for the production of ultrastable plasmonic Cu nanoparticles enabled by core-shell strategy
通过核壳策略生产超稳定等离子体铜纳米粒子的市场研究
  • 批准号:
    560510-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Idea to Innovation
Market Study for the production of ultrastable plasmonic Cu nanoparticles enabled by core-shell strategy
通过核壳策略生产超稳定等离子体铜纳米粒子的市场研究
  • 批准号:
    560510-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Idea to Innovation
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic core-shell luminescent nanoparticles: A self-supporting sensing platform
等离激元核壳发光纳米粒子:自支撑传感平台
  • 批准号:
    RGPIN-2015-06468
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了