Representation theoretic methods in geometry and topology
几何和拓扑中的表示理论方法
基本信息
- 批准号:RGPIN-2014-04841
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The common theme of this proposal is the use of representation theoretic methods (often inspired by ideas in categorification) to study*a) 3-manifold invariants (e.g. Reshetikhin-Turaev invariants),*b) categories arising in algebraic geometry (e.g. categories of coherent sheaves or D-modules on moduli spaces),*c) (categorified) quantum groups and vertex operator algebras.**One of the main tools in low dimensional topology are invariants which can distinguish between different 3-dimensional (or 4-dimensional) manifolds. A series of such invariant were introduced by Reshetikhin and Turaev. These Reshetikhin-Turaev (RT) invariants have deep connections to representation theory and, in particular, to quantum groups. In some ways, these connections are even more fundamental than the original relation to topology.**The simplest RT invariant for knots in the 3-sphere is called the Jones polynomial (since it was discovered earlier by Vaughan Jones). In 2001 Mikhail Khovanov showed that the Jones polynomial can be lifted to a more powerful homological invariant (now called Khovanov homology).**In subsequent work, jointly with Joel Kamnitzer, I showed that Khovanov homology can also be defined using categories of coherent sheaves on certain iterated Grassmannian bundles. These varieties can be defined using the affine Grassmannian which in turn is related (via geometric Satake) to the representation theory of semisimple Lie algebras. This is part of a sequence of ideas and results highlighting certain deep relations between algebraic geometry, representation theory and topology. **The main part of this proposal involves extending this story further. On the topology side one would like to lift the RT invariants to homological invariants of arbitrary 3-manifolds (not just knots in the 3-sphere). On the algebro-geometric side one would like to understand certain categories of coherent sheaves (and D-modules) on more complicated varieties appearing in geometric representation theory. This involves developing new techniques in representation theory of quantum groups as well as categorification (the study of their higher, homological analogues).**On the representation theoretic side one has the rich theory of vertex operators. These operators form one way to define the RT 3-manifold invariants. In earlier work with Anthony Licata, we showed how these operators can be categorified by relating them to categories of coherent sheaves on Hilbert schemes of points on surfaces (generalizing work of Nakajima and Grojnowski). I hope to continue this study of "categorified" vertex operators and their relation to geometry. One of the main aims is to use this to lift the RT invariants to homological invariants of all 3-manifolds.**The original introduction of vertex operator algebras by Borcherds and Frenkel-Lepowski-Meurman was for the purposes of proving the moonshine conjecture (which is a remarkable relationship between the largest sporadic finite group and the j-function from number theory). Subsequently, understanding the "higher" theory of vertex operators could also lead to a categorical version of moonshine theory.**To conclude, the aim of this proposal is to relate certain aspects from several fields: algebraic geometry, representation theory, 3-manifold invariants and categorification. There is a promising, rich and largely unexplored interplay between these areas along the lines sketched out above.
The common theme of this proposal is the use of representation theoretic methods (often inspired by ideas in categorification) to study*a) 3-manifold invariants (e.g. Reshetikhin-Turaev invariants),*b) categories arising in algebraic geometry (e.g. categories of coherent sheaves or D-modules on moduli spaces),*c) (categorified) quantum groups and顶点操作员代数。**低维拓扑中的主要工具之一是不变的,可以区分不同的三维(或4维)歧管。 Reshetikhin和Turaev引入了一系列这种不变。这些Reshetikhin-turaev(RT)不变性与表示理论,尤其是与量子群具有深厚的联系。在某些方面,这些连接比与拓扑的原始关系更为基本。 2001年,米哈伊尔·科瓦诺夫(Mikhail Khovanov)表明,琼斯多项式可以提升为更强大的同源不变(现在称为Khovanov同源性)。这些品种可以使用仿生的草个植物来定义,该植物依次与半密布代数的表示理论相关(通过几何萨克)。这是一系列思想的一部分,结果突出了代数几何,代表理论和拓扑之间的某些深厚关系。 **该提案的主要部分涉及进一步扩展这个故事。在拓扑面上,人们希望将RT不变性升至任意3个manifolds的同源性不变式(不仅仅是3个球中的结)。在代数几何方面,人们想了解几何表示理论中出现的更复杂品种的某些类别的相干滑轮(和D模块)。这涉及开发量子群和分类理论的新技术(对它们较高的同源类似物的研究)。这些操作员构成了定义RT 3个manifold不变性的一种方法。在与Anthony Licata的早期合作中,我们展示了如何通过将这些操作员与表面上的Hilbert Shemes上的相干滑轮相关联(概括Nakajima和Grojnowski的工作)来分类。我希望继续对“分类”顶点操作员及其与几何形状的关系进行这项研究。主要目的之一是用它来将RT不变性提升到所有3个策略的同源物。随后,理解顶点操作员的“较高”理论也可能导致月光理论的分类版本。这些区域之间有一个有希望的,丰富的且在很大程度上没有探索的相互作用,沿着上面的线条。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cautis, Sabin其他文献
Curved Rickard complexes and link homologies
弯曲的里卡德复合物和链接同源性
- DOI:
10.1515/crelle-2019-0044 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cautis, Sabin;Lauda, Aaron D.;Sussan, Joshua - 通讯作者:
Sussan, Joshua
W-ALGEBRAS FROM HEISENBERG CATEGORIES
海森堡范畴的 W 代数
- DOI:
10.1017/s1474748016000189 - 发表时间:
2016 - 期刊:
- 影响因子:0.9
- 作者:
Cautis, Sabin;Lauda, Aaron D.;Licata, Anthony M.;Sussan, Joshua - 通讯作者:
Sussan, Joshua
Cautis, Sabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cautis, Sabin', 18)}}的其他基金
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Geometry and Geometric Representation Theory
代数几何与几何表示论
- 批准号:
1000229452-2013 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Algebraic Geometry and Geometric Representation Theory
代数几何与几何表示论
- 批准号:
1000229452-2013 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
相似国自然基金
多尺度自适应单纯复形表示学习的高阶链路预测理论与方法研究
- 批准号:62366030
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于李群状态表示的惯性基导航信息融合理论与方法研究
- 批准号:62373367
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
内嵌语义规则的知识图谱表示学习理论和方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于双曲几何理论的表示学习方法及其应用研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
内嵌语义规则的知识图谱表示学习理论和方法
- 批准号:62276014
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Representation Theoretic Methods in Number Theory
数论中的组合和表示论方法
- 批准号:
DE200101802 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Early Career Researcher Award