Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices

基于仿真的多层二维柔性纳米电子器件的预测分析和优化

基本信息

  • 批准号:
    RGPIN-2014-05920
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The electronics industry has changed dramatically over the last decade, shifting its focus from high performance to mobile applications; today’s technology drivers typically target low-power, lightweight, transparent and flexible functionality. In this regard, a new class of thin, 2D layered nanomaterials is favorable, offering numerous opportunities for emerging electronic devices.Like highly confined conventional 3D semiconductors, electronic properties of layered materials change substantially with the thickness of material (i.e., the number of layers), but in a quite different manner such that the change of band structure is beyond the simple physical confinement effects. In addition, unlike single-layer materials, the transport properties of a multi-layer system are significantly affected by interactions between the neighboring layers. Furthermore, different combination of 2D materials, particularly those that include artificial lateral heterostructures (e.g., graphene and hexagonal boron nitride), may enable new functionality. Such novel 2D materials are promising for future electronic devices specifically on plastic substrates due to their thinness and flexibility. However, our understanding of multi-layer flexible electronic devices is still in its infancy and our current fabrication and engineering methods for these devices are far from optimal. Therefore, the proposed Discovery Grant program will pursue critical new fundamental understanding of the basic scientific and complex engineering problems underlying multi-layer 2D flexible nanoelectronics through highly efficient computer simulations.The program will build upon the applicant’s recent research in quantum transport simulations for emerging devices based on various nanomaterials including nanowires (1D), graphene (2D) and confined InAs (3D). From the simulation viewpoint, the investigation of multi-layer 2D nanoelectronics calls for fundamentally different approaches from single-layer or confined 3D semiconductor devices. Therefore, the investigation of quantum transport in multi-layer systems, especially in the presence of out-of-plane strain will indeed be groundbreaking in this field. In pursuing the program's overall goals, several shorter-term objectives will be addressed over the next five years, each of which will advance the state-of-knowledge on layered material electronics and provide a unique training environment for imparting leading edge skills in computational nanotechnology research: (1) To obtain fundamental understanding of layered-material flexible electronics with external stress through atomistic quantum transport simulations; (2) To provide accurate predictions and ultimate optimization of such nanodevices; (3) To develop a highly efficient parallel code to quickly solve large-scale diffusive transport problems of 2D flexible electronics; (4) To calibrate theoretical models with experiments.Outcomes of this research program will provide deep insights into multi-layer 2D flexible electronics, laying critical groundwork for the future, ultra-portable and flexible electronic devices. Currently global semiconductor industry has a $300 billion market per year and the development of this research program will bring huge economic benefit to Canada’s IT industries as the source of information is shifting rapidly from desktop to mobile devices. In addition, this research will help position Canada at the forefront of nanoelectronics research through HQP training; two PhD and three MASc and one Undergraduate Co-op students will be trained to acquire unique skills of numerical simulations including non-equilibrium Green’s function method, and graduates from this program will be highly sought after by both research organization and industries.
在过去的十年中,电子行业发生了巨大变化,将其重点从高性能转变为移动应用程序。当今的技术驱动程序通常针对低功率,轻巧,透明和灵活的功能。在这方面,一类新的薄2D层纳米材料是有利的,为新兴的电子设备提供了许多机会。像高度密闭的传统3D半导体,分层材料的电子性能大大变化,材料的厚度(即,层的数量),但以完全不同的方式构成了构造的构成。此外,与单层材料不同,多层系统的传输特性受到相邻层之间相互作用的显着影响。此外,2D材料的不同组合,尤其是包括人工后来的异质结构(例如石墨烯和六角硼硝化硼)的材料,可能会实现新功能。由于塑料底物的薄和柔韧性,这种新型2D材料被承诺针对未来的电子设备,专门针对塑料底物。但是,我们对多层柔性电子设备的理解仍处于起步阶段,我们目前针对这些设备的制造和工程方法远非最佳。因此,拟议的发现赠款计划将通过高效的计算机模拟来追求对多层2D柔性纳米电子的基本科学和复杂工程问题的关键新基本理解。该程序将基于申请人的最新研究基于基于纳米物质的各种纳米材料(包括纳米物质)的量子运输模拟的最新研究,包括纳米物质(包括纳米层)(包括1d)(1D)(1D)(2D)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2d)(2D)(2D)(2D)(2D)(2D)(2D)(2D)(2d)(2D)(2D)(2D)(2D)(2D)(2D)(2D)。从模拟的角度来看,多层2D纳米电子学的投资要求与单层或受限3D半导体设备的根本不同的方法。因此,量子传输在多层系统中的投资,尤其是在平面外应变的存在下确实会在该领域开创性。在追求该计划的整体目标时,将在未来五年内解决一些短期目标,每个目标都将提高对分层材料电子产品的最新知识,并为计算纳米技术研究的公智领先技能提供独特的培训环境:(1)以通过对分层的固定电子固定量的基本理解通过对外部智能量的基本理解,以实现对外层柔性量的基本理解; (2)提供此类纳米版权的准确预测和最终优化; (3)开发一个高效的并行代码,以快速解决2D柔性电子设备的大规模分化传输问题; (4)通过实验校准理论模型。该研究计划的outcomes将为多层2D柔性电子设备提供深入的见解,为未来,超大型和灵活的电子设备奠定了关键的基础。目前,全球半导体行业每年拥有3000亿美元的市场,该研究计划的制定将为加拿大的IT行业带来巨大的经济利益,因为信息来源正在迅速从台式机转移到移动设备。此外,这项研究将通过HQP培训帮助加拿大在纳米电子研究的最前沿。两名博士学位和三名MASC和一名本科合作社将接受培训,以获得数值模拟的独特技能,包括非平衡性Green的功能方法,并且该计划的毕业生将在研究组织和行业都非常合理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoon, YoungKi其他文献

Yoon, YoungKi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoon, YoungKi', 18)}}的其他基金

Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于SD模型的医疗资源配置效率和公平性仿真模拟与预测性评价研究
  • 批准号:
    71964015
  • 批准年份:
    2019
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
基于社会水文学的黄土高原水文非一致性成因及模拟预测研究
  • 批准号:
    51979005
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于GIS及WSNs的不透水表面扩张对滇池水体表面温度影响研究
  • 批准号:
    41761084
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
基于细观塑性不均匀变形分析的金属疲劳寿命预测方法
  • 批准号:
    11472085
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
基于DEM法的不同混合机颗粒混合可预测性研究
  • 批准号:
    51464042
  • 批准年份:
    2014
  • 资助金额:
    46.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

PBPK Modeling & Simulation to Predict Transporter-Mediated Drug Secretion into Human Breast Milk
PBPK 建模
  • 批准号:
    10706040
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
  • 批准号:
    10735946
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Reproducibility in simulation-based prediction of natural knee mechanics
基于模拟的自然膝关节力学预测的可重复性
  • 批准号:
    10655984
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
  • 批准号:
    10722762
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Mathematical Optimization of Surveillance Ages to Intercept colitis-associated Colorectal cancer (MOSAIC)
监测年龄的数学优化以拦截结肠炎​​相关结直肠癌 (MOSAIC)
  • 批准号:
    10581069
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了