Spectrum and Geometry
光谱与几何
基本信息
- 批准号:RGPIN-2014-05385
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I work at the intersection of geometric analysis, PDE and mathematical physics, studying spectra and eigenfunctions of Laplace-type and Dirac-type operators. Laplacian arises in the study of celestial mechanics, heat and wave propagation, and quantum mechanics. Eigenfunctions of Laplacian describe vibrations of a string or a drum, pure states in quantum mechanics (atoms and molecules), and many other phenomena. Related problems arise when one studies acoustics (propagation of sound) and optics; data analysis ("manifold learning"); fluid flows and plasma flows in thermonuclear reactors. I have studied the behaviour of eigenfunctions for both integrable and ergodic systems. I have worked on several main questions in Spectral Theory: (a) Study of limits of eigenfunctions for ergodic systems (Quantum Ergodicity on hyperbolic surfaces; analogous results for eigenfunctions of Dirac operator and Hodge Laplacian; QE for branching billiards, an important new class of results established in 2012); as well as for integrable systems, where some of the results were extended to solutions of Schrodinger equation; (b) Spectral function (I established lower bounds and proved an accurate trace formula for surfaces of variable negative curvature); (c) Nodal and critical sets (I answered in the negative a question raised by S.T. Yau about the number of critical points of eigenfunctions; studied topology of nodal sets of random spherical harmonics; and recently found surprising connections to conformal geometry); (d) In a recent paper, I initiated the study of random wave conjectures for eigenfunctions using probabilistic methods. In the last 2 years I have also studied spectral theory of resonances. In addition, I initiated the rigorous study of averaging over geometrically natural spaces of Riemannian metrics, with applications to the study of geometric and spectral invariants of random Riemannian metrics. My long-term objectives include continuing the study of various important questions in spectral theory, with applications to geometry and PDE. My short-term objectives include continuing the work on research programs, concentrating on the following areas: (1) Semiclassical theory of discontinuous systems;(2) Measures and averaging on manifolds of metrics, including constructing "canonical" measures on conformal classes in higher dimensions, as well as the study of Random Wave conjectures; (3) Spectral theory on asymptotically hyperbolic manifolds; (4) Spectral theory of conformally covariant operators. Systems in (1) describe wave propagation through air-water interface, semiconductors, impurities in crystals, including seismic waves and elasticity. Semiclassical and ergodic theory of systems will have important practical applications. The eigenstates studied in (2) arise in the study of Loschmidt echo effect (quantum fidelity) in physics. The novel techniques described in (2) may help to answer some fundamental conjectures in Quantum Chaos raised in 1960s and 1970s; developing those techniques may also lead to progress in related problems arising in Conformal Field Theory in Physics, as well as in Quantum Gravity. Related questions arise in the study of random maps, and have applications in astrophysics, medical imaging and other fields. Questions considered in (4) have applications in conformal geometry, relativity, and certain nonlinear PDE. Problems related to the study of resonances in (3) have important application in imaging and inverse problems. Problems in semiclassical theory arise in the theory of quantum computing ("quantum dots"); in chemical and molecular physics; and in atomic physics (atomic nuclei).
我的工作涉及几何分析、偏微分方程和数学物理的交叉领域,研究拉普拉斯型和狄拉克型算子的谱和本征函数。拉普拉斯算子出现在天体力学、热与波传播以及量子力学的研究中。拉普拉斯算子的本征函数描述了弦或鼓的振动、量子力学中的纯态(原子和分子)以及许多其他现象。当人们研究声学(声音的传播)和光学时,就会出现相关的问题。数据分析(“流形学习”);热核反应堆中的流体流动和等离子体流动。我研究了可积系统和遍历系统的本征函数的行为。我研究了谱理论中的几个主要问题:(a)遍历系统本征函数极限的研究(双曲曲面上的量子遍历性;狄拉克算子和霍奇拉普拉斯本征函数的类似结果;分支台球的 QE,这是一种重要的新类别2012 年确定的结果);以及可积系统,其中一些结果被扩展到薛定谔方程的解; (b) 谱函数(我建立了下界并证明了可变负曲率表面的精确迹公式); (c) 节点集和临界集(我对 S.T. Yau 提出的关于本征函数临界点数量的问题给出了否定的回答;研究了随机球谐函数的节点集的拓扑;最近发现了与共形几何的令人惊讶的联系); (d) 在最近的一篇论文中,我开始使用概率方法研究本征函数的随机波猜想。在过去的两年里,我还研究了共振谱理论。此外,我还发起了对黎曼度量的几何自然空间进行平均的严格研究,并将其应用于随机黎曼度量的几何和谱不变量的研究。我的长期目标包括继续研究谱理论中的各种重要问题,及其在几何和偏微分方程中的应用。我的短期目标包括继续开展研究项目,重点关注以下领域:(1)不连续系统的半经典理论;(2)多种度量的测量和平均,包括在更高层次上构建共形类的“规范”测量维度,以及随机波猜想的研究; (3) 渐近双曲流形谱论; (4)共形协变算子的谱理论。 (1) 中的系统描述了通过空气-水界面、半导体、晶体中的杂质的波传播,包括地震波和弹性。系统的半经典理论和遍历理论将具有重要的实际应用。 (2) 中研究的本征态出现在物理学中洛施密特回波效应(量子保真度)的研究中。 (2)中描述的新颖技术可能有助于回答20世纪60年代和1970年代提出的量子混沌的一些基本猜想;开发这些技术还可能导致物理学中的共形场论以及量子引力中出现的相关问题取得进展。相关问题出现在随机地图的研究中,并在天体物理学、医学成像和其他领域有应用。 (4) 中考虑的问题在共形几何、相对论和某些非线性偏微分方程中都有应用。 (3)中与共振研究相关的问题在成像和反演问题中具有重要的应用。半经典理论中的问题出现在量子计算理论(“量子点”)中;化学和分子物理学;以及原子物理学(原子核)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jakobson, Dmitry其他文献
Jakobson, Dmitry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jakobson, Dmitry', 18)}}的其他基金
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
- 批准号:
RGPIN-2019-03900 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spectrum and Geometry
光谱与几何
- 批准号:
RGPIN-2014-05385 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spectrum and Geometry
光谱与几何
- 批准号:
RGPIN-2014-05385 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
- 批准号:
10724495 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Proteomics based mapping of cardiac extracellular matrix to define sex and age-dependent changes
基于蛋白质组学的心脏细胞外基质图谱来定义性别和年龄依赖性变化
- 批准号:
10751473 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
High density chronic optogenetic interface for primate brains
灵长类大脑的高密度慢性光遗传学接口
- 批准号:
10706899 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
A versatile lens architecture to shape visible light
用于塑造可见光的多功能镜头架构
- 批准号:
10652885 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别: