General Limit Theorems in Probability with Applications to Statistics

概率的一般极限定理及其在统计中的应用

基本信息

  • 批准号:
    RGPIN-2014-05428
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

My research proposal is devoted to general limit theorems in probability and asymptotic statistics and in their applications to a wide variety of problems.We live in a random world. Probability theory is the branch of mathematics concerned with analysis of random phenomena. Limit theory lies at the heart of probability and statistics and plays a central stage in almost every branch of science or social science including weather forecasting, psephology, etc. Results such as the law of large numbers, the central limit theorem, and the law of the iterated logarithm for independent random variables have given shape to modern probability theory. They have been extended and generalized in many directions, among others, to more general random processes and random measures, and they have become the bases of asymptotic statistics. Asymptotic statistics or large sample theory, is a generic framework for the assessment of properties of estimators and statistical tests. Within this framework, it is typically assumed that the sample size n grows indefinitely, and the properties of statistical procedures are evaluated in the limit as the sample size n tends to infinity.The first focus of this research proposal relates to my my long-standing research interest in almost sure and weak convergence of random processes, especially in the law of the iterated logarithm, the laws of large numbers, central limit theorems, probabilities of large and moderate deviations, and precise asymptotics in the classical limit theorems for real-valued or Banach space-valued random processes. The goal is to study refinements of the classical limit results and to develop some new methods for proving almost sure and weak convergence of random processes and to continue my previous research work, i.e., to use modern random process techniques in probability and to develop some new probability inequalities for random processes in order to find conditions under which almost sure and weak convergence holds for random processes and to investigate statistical applications of such convergence.A second focus will be on investigating the asymptotic behavior in statistical applications pertaining to hierarchical models, L-statistics, U-statistics, resampling methods, and high dimensional data analysis problems such as the largest entry of a sample correlation matrix, estimation of conditional density and mode with truncated and censored data, etc. For example, motivated by a statistical hypothesis testing problem, asymptotic behavior of the largest entry of a sample correlation matrix has been studied extensively in recent years including my three refereed journal articles: 1. The Annals of Applied Probability, Vol. 16, 423-447, 2006 (with A. Rosalsky), 2. Probability Theory and Related Fields, Vol. 148, 5-35, 2010 (with W. Liu and A. Rosalsky), and 3. Journal of Multivariate Analysis, Vol. 111, 256-270, 2012 (with Y. Qi and A. Rosalsky). The successful completion of my proposed work would be an important step in increasing our understanding of the asymptotic behavior of the largest entry of a sample correlation matrix in very general and applicable situations.The results related to this proposal will be novel and significant insofar as they will extend, generalize, and refine earlier work in the literature. All results will be formalized in papers for publication in major academic journals.
我的研究建议致力于一般限制概率和渐近统计的定理,以及它们在各种问题上的应用中。我们生活在一个随机的世界中。概率理论是与随机现象分析有关的数学分支。极限理论是概率和统计的核心,在科学或社会科学的几乎每个分支中都扮演着中心阶段独立随机变量的迭代对数已赋予现代概率理论。它们已在许多方向上扩展和概括为更一般的随机过程和随机措施,它们已成为渐近统计的基础。渐近统计或大型样本理论是评估估计器和统计检验性质的通用框架。在此框架内,通常假定样本量n无限期地增长,并且由于样本量N趋向于无穷大。研究对随机过程几乎确定和弱收敛的研究兴趣,尤其是在迭代对数的定律中,大量定律,中心限制定理,较大和中等偏差的概率以及经典定理的实时差异和精确的渐近级别定理。或Banach太空值随机过程。目的是研究经典限制结果的改进,并开发一些新的方法来证明几乎确定的随机过程的融合,并继续我以前的研究工作,即在概率上使用现代的随机过程技术并开发一些新的过程随机过程的概率不平等,以找到条件,在这些条件下,几乎确定的和弱的收敛性对于随机过程和研究了这种收敛的统计应用。第二个重点将是研究与层次模型有关的统计应用中的渐近行为,l-统计,U统计数据,重采样方法以及高维数据分析问题,例如样本相关矩阵的最大进入,有条件密度的估计以及使用截短和审查的数据进行估计等等。 ,近年来已经对样品相关矩阵最大的最大入口的渐近行为进行了研究,包括我的三篇指南期刊文章:1。应用概率的纪念日,第1卷。 16,423-447,2006(与A. Rosalsky一起),2。概率理论和相关领域,第1卷。 148,5-35,2010(与W. Liu和A. Rosalsky一起)和3。多变量分析杂志,第1卷。 111,201,2012(与Y. Qi和A. Rosalsky一起)。在非常一般且适用的情况下,我提出的工作的成功完成将是增加对样品相关矩阵最大进入的渐近行为的了解。将扩展,概括和完善文献中的早期工作。所有结果将在主要学术期刊的论文中正式化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, Deli其他文献

The limit law of the iterated logarithm in Banach space
Banach空间中迭代对数的极限定律
  • DOI:
    10.1016/j.spl.2013.04.007
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Li, Deli;Liang, Han-Ying
  • 通讯作者:
    Liang, Han-Ying
Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors.
  • DOI:
    10.1002/advs.202201150
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Yang, Xilin;Zhou, Xiuwen;Zhang, Ye-Xin;Li, Deli;Li, Chensen;You, Caifa;Chou, Tai-Che;Su, Shi-Jian;Chou, Pi-Tai;Chi, Yun
  • 通讯作者:
    Chi, Yun
Comprehensive evaluation of effects and safety of statin on the progression of liver cirrhosis: a systematic review and meta-analysis
  • DOI:
    10.1186/s12876-019-1147-1
  • 发表时间:
    2019-12-30
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gu, Yue;Yang, Xueqin;Li, Deli
  • 通讯作者:
    Li, Deli
The Impact of Environmental Regulation on the Green Overall Factor Productivity of Forestry in the Yangtze River Economic Belt
  • DOI:
    10.3390/f14102004
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Li, Deli;Li, Yang;Mendako, Richard K.
  • 通讯作者:
    Mendako, Richard K.
Digital measurement method for comparing the absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated using conventional and digital technologies.
  • DOI:
    10.1186/s12903-023-03620-9
  • 发表时间:
    2023-11-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang, Shanshan;Yuan, Fusong;Li, Deli;Jia, Lu;Sun, Yuchun
  • 通讯作者:
    Sun, Yuchun

Li, Deli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li, Deli', 18)}}的其他基金

Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Limit Theorems and Statistical Applications
概率极限定理和统计应用
  • 批准号:
    227089-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Limit Theorems and Statistical Applications
概率极限定理和统计应用
  • 批准号:
    227089-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

分形的傅里叶分析
  • 批准号:
    11901593
  • 批准年份:
    2019
  • 资助金额:
    28.9 万元
  • 项目类别:
    青年科学基金项目
若干振荡积分算子的研究及其应用
  • 批准号:
    11901301
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
若干与振荡积分相关联的问题研究
  • 批准号:
    11871452
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
若干与鲁津型猜测相关联之问题的研究
  • 批准号:
    11671363
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
振荡积分及相关课题研究
  • 批准号:
    11471309
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Formation and Development of the Abuse of Power Theory in French Private Law
法国私法滥用权力理论的形成与发展
  • 批准号:
    17K13645
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A study of Cartan decompositions and invariant measures for spherical homogeneous spaces of reductive type
还原型球齐次空间嘉当分解及不变测度研究
  • 批准号:
    15K04797
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了