Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology

数学生物学中的非局部和各向异性偏微分方程

基本信息

  • 批准号:
    RGPIN-2017-04158
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

In this research I consider nonlocal and anisotropic differential equations that arise as mathematical models for biological processes. These models are generalizations of well known reaction-advection-diffusion models and a rich qualitative theory is waiting to be explored. I expect to find new forms of pattern formation that include singular solutions, global patterns and accelerated invasion fronts. I will use these versatile models for several specific biological applications. For example, I use the models to analyse how wolves use linear features in the forest environment to change their hunting strategies, and how we can understand the impact of this change on wolf-ungulate dynamics. Another example involves sea turtles, who use an internal compass to navigate long distances across the ocean to find their breeding beaches. Mathematical models help to understand their navigational abilities by quantifying directional cues (magnetic, chemotactic), and they are used to develop protection strategies. The nonlocal models also apply to forest fire spread, and they are used to estimate the probability that a fire breaches an obstacle to enter human settlements. Finally, another application of these class of models lies in cancer research. While cancer research is not directly part of this NSERC grant, results and methods developed here will impact cancer modelling and provide a framework to develop better treatment strategies. Nonlocal and anisotropic continuum models for spatial movement obtain their beauty from a rich mathematical theory and wide reaching applications.
在这项研究中,我考虑了作为生物过程数学模型而出现的非局部和各向异性微分方程。这些模型是众所周知的反应-平流-扩散模型的概括,丰富的定性理论有待探索。我期望找到新的模式形成形式,包括单一解决方案、全球模式和加速入侵前沿。我将使用这些多功能模型来实现几个特定的​​生物应用。例如,我使用模型来分析狼如何利用森林环境中的线性特征来改变它们的狩猎策略,以及我们如何理解这种变化对狼有蹄类动物动力学的影响。另一个例子涉及海龟,它们使用内部指南针在海洋上长途航行,寻找它们的繁殖海滩。数学模型通过量化方向线索(磁性、趋化性)来帮助了解它们的导航能力,并用于制定保护策略。非局域模型也适用于森林火灾蔓延,它们用于估计火灾突破障碍进入人类住区的概率。最后,此类模型的另一个应用在于癌症研究。虽然癌症研究并不是 NSERC 拨款的直接组成部分,但这里开发的结果和方法将影响癌症模型,并提供一个框架来制定更好的治疗策略。空间运动的非局部和各向异性连续体模型从丰富的数学理论和广泛的应用中获得了其美感。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hillen, Thomas其他文献

The "edge effect" phenomenon: deriving population abundance patterns from individual animal movement decisions
  • DOI:
    10.1007/s12080-015-0283-7
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Potts, Jonathan R.;Hillen, Thomas;Lewis, Mark A.
  • 通讯作者:
    Lewis, Mark A.
A stochastic model for cancer metastasis: branching stochastic process with settlement
From cell population models to tumor control probability: Including cell cycle effects
  • DOI:
    10.3109/02841861003631487
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hillen, Thomas;De Vries, Gerda;Finlay, Chris
  • 通讯作者:
    Finlay, Chris
A classification of spikes and plateaus
  • DOI:
    10.1137/050632427
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Hillen, Thomas
  • 通讯作者:
    Hillen, Thomas
Identification and Management of Substance Misuse in Patients Referred for Psychodynamic Psychotherapy: A Service Evaluation Project
  • DOI:
    10.1192/bjo.2022.400
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Lusby, Joshua;Chu, Kenny;Sathanandan, Shivanthi;Hillen, Thomas
  • 通讯作者:
    Hillen, Thomas

Hillen, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hillen, Thomas', 18)}}的其他基金

Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Energy metabolism modelling with sensitivity to activity thermogenesis tracking data
对活动生热跟踪数据敏感的能量代谢建模
  • 批准号:
    508657-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Engage Grants Program
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

各向异性介质中的超声兰姆导波波前调控及新原理集成化功能器件研究
  • 批准号:
    12374438
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
各向异性柔性覆层湍流边界层直接数值模拟研究
  • 批准号:
    12362022
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
带电流型畸变校正的大地电磁三维各向异性自适应反演研究
  • 批准号:
    42304081
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
翁通爪哇洋底高原及其周边壳幔三维各向异性速度结构及构造意义
  • 批准号:
    42376080
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高各向异性FeCoNi/碳纳米管-石墨烯复合材料的多场耦合构筑及其低频超宽带吸波性能
  • 批准号:
    52301239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse problems for partial differential equations in mechanics and engineering science
力学和工程科学中偏微分方程的反问题
  • 批准号:
    16540095
  • 财政年份:
    2004
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了