Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
基本信息
- 批准号:8907-2013
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combinatorics is the study of arrangements of sets of finite objects and relationships between them. Research in combinatorics is centrally motivated by applications in other mathematical and physical sciences, and in engineering. Many such applications require only that one determine the number of objects in a set, called "counting" the set. In algebraic combinatorics we make extensive use of results and methods from algebra in this study. One of the most fundamental combinatorial objects is called a permutation, which reorders the elements of a finite set. A transposition is a very simple permutation, that simply interchanges the order of ("transposes") two of the elements. A product of permutations is obtained by successive reordering, and in algebra, the set of all permutations of a set with this product is called the symmetric group.The purpose of this Research Proposal is to study applications of algebraic combinatorics to matrix integrals and algebraic geometry, to problems that have been especially significant in the recent research literature because of the surprising variety of areas in mathematics and physics that their solutions involve. For example, Hurwitz numbers arise in geometry as the number of ramified covers of the sphere, but this is equivalent in purely combinatorial terms to the number of ways in which a given permutation can be expressed as a product of transpositions in the symmetric group with a certain "connectivity" condition, and a given number of permutations in the product. These numbers and a new variant are studied in this proposal, and have been of great recent research interest because they have been significant in the study of 2-dimensional gravity, integrable hierarchies, matrix integrals, moduli spaces, enumerative geometry, and combinatorics. Of major interest in this proposal is to make the interaction between algebraic combinatorics and geometry two-way, not simply solving a geometric problem as stated, but to go further and obtain additional information about the original geometric questions themselves, or suggest new methods of solution within geometry.
组合学是对有限对象及其之间关系的布置的研究。组合学的研究是由其他数学和物理科学以及工程学中的应用中的集中动机。许多此类应用程序仅要求一个确定一个集合中的对象数量,称为“计数”集合。在代数组合学中,我们在本研究中广泛使用代数的结果和方法。最基本的组合对象之一称为排列,它可以重新定位有限集的元素。换位是一个非常简单的置换,它只是互换了(“转移”)两个元素的顺序。置换的产物是通过连续的重新排序获得的,在代数中,该产品的所有置换量都称为对称组。该研究建议的目的是研究代数组合对矩阵积分和代数几何学的应用,在最近的研究中尤其重要,因为该领域的实体是尤其重要的,因为该领域尤其重要,因为该领域的实体构成了众所周知的实现。例如,在几何形状中出现了Hurwitz数字作为球体的覆盖范围的数量,但这与纯粹组合术语相当于给定排列可以作为对称组中的转换产物表达为具有一定的“连接性”条件的对称组中的乘积,并且产品中给定的置换次数。在该提案中研究了这些数字和新的变体,并且具有极大的研究兴趣,因为它们在研究二维引力,可集成的层次结构,基质积分,模量空间,枚举几何形状和组合术方面具有重要意义。该提案的主要兴趣是使代数组合学和几何形状之间的相互作用双向进行,而不仅仅是解决几何问题,而是要进一步解决并获取有关原始几何问题本身的其他信息,或者建议在几何学中提出新的解决方案方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goulden, Ian其他文献
Goulden, Ian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goulden, Ian', 18)}}的其他基金
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics with applications in geometry
代数组合数学及其在几何中的应用
- 批准号:
8907-2008 - 财政年份:2012
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics with applications in geometry
代数组合数学及其在几何中的应用
- 批准号:
8907-2008 - 财政年份:2011
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics with applications in geometry
代数组合数学及其在几何中的应用
- 批准号:
8907-2008 - 财政年份:2010
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics with applications in geometry
代数组合数学及其在几何中的应用
- 批准号:
8907-2008 - 财政年份:2009
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics with applications in geometry
代数组合数学及其在几何中的应用
- 批准号:
8907-2008 - 财政年份:2008
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and ramified covers of surfaces
代数组合和曲面的分支覆盖
- 批准号:
8907-2003 - 财政年份:2007
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
大豆玉米秸秆组合还田分解和向土壤有机碳转化的过程及其生物学机制
- 批准号:42377338
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Schubert演算的组合学
- 批准号:12371329
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
齿菌属(Hydnum)的系统学与菌根组合类型研究
- 批准号:32300002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
病证结合“症状-症状组合-证候”基因组测序层面生物学基础研究的新方法学研究
- 批准号:82174237
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于多组学数据的癌症合成致死基因组合的研究
- 批准号:62171236
- 批准年份:2021
- 资助金额:64 万元
- 项目类别:面上项目
相似海外基金
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Study on Hadamard matrices based on algebraic combinatorics
基于代数组合学的Hadamard矩阵研究
- 批准号:
15K21075 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics, matrix integrals and algebraic geometry
代数组合、矩阵积分和代数几何
- 批准号:
8907-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual