Development and application of new methods for computing rovibrational spectra and rate constants

计算振动谱和速率常数新方法的开发和应用

基本信息

  • 批准号:
    RGPIN-2014-05676
  • 负责人:
  • 金额:
    $ 6.12万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research is in theoretical chemistry and addresses the motion of atoms in molecules and during reactions. The motion of atoms is easy to calculate and understand if they remain confined very close to an equilibrium geometry. Real chemistry, however, involves large amplitude motion and the making and breaking of bonds. To understand, at a detailed level, the motion of atoms, one must apply the laws of quantum mechanics and solve the Schrödinger equation by representing wavefunctions (functions from which one can calculate all observable properties) in terms of basis functions and using methods of linear algebra to compute observables. The calculations are difficult because the required number of functions and therefore the size of the matrices and vectors to be manipulated is large. I shall develop new ideas for choosing better basis functions, to reduce the number of functions required. From solutions of the Schrödinger equation one can deduce properties of molecules and interpret experimental results. Our work will provide information necessary for understanding how molecules in the atmosphere absorb and emit radiation, which is important for modelling global warming. Understanding and combating global warming is one of the most important problems of our time. We will study greenhouse gas molecules (ozone, water dimer, methane) and molecules of interest in astrophysics (e.g. CH5+). The greenhouse effect is the rise in temperature that the Earth experiences because gases in the atmosphere trap energy from the sun. A better understanding of greenhouse gases will help us to know how they absorb heat and hence to what extent they are responsible for global warming. Water is an important greenhouse gas and understanding the spectrum of water dimer may be important. This is difficult in the lab because the spectra of water monomer and dimer overlap. The water dimer is also prototype system for understanding hydrogen bonding, which is important in many biological molecules. We shall also study the propargyl radical which is important in combustion. The new techniques we propose developing will enable scientists to understand the motion of atoms in hydrogen bonded molecules (e.g. water dimer). Hydrogen bonds play a very important role in nature. For example, the structure of DNA is determined by hydrogen bonds. Established computational methods for studying the motion of atoms are inadequate for hydrogen bonded molecules. We will also develop methods to calculate rate constants. To model any complex reacting system one requires rate constants for the elementary reactions that are implicated. The development of accurate, dependable methods to calculate such rate constants would enable one to model (for example) combustion and atmospheric chemistry much more reliably. The computational methods we develop, both those applied to isolated molecules (spectroscopy) and those applied to reactions (rate constants) relate to the motion of molecules. They will help chemists to analysis and understand laboratory data. Numerical methods we develop may also be useful in other areas of science and engineering. E.g., the equations we use to compute rate constants are also used to study conductivity of molecules. In the course of doing this research, HQP will be trained in computational chemistry, numerical analysis and computer science and profit from opportunities provided by numerous international collaborations. Because computational science is important for maintaining health and prosperity it is critical that Canada train scientists to both develop and use modern numerical methods and modern computers.
拟议的研究是在现实中,并且在现实中了解它们是否非常接近平衡。方程表示,在基础函数和线性代数的方法中,一个可观察到的函数是计算Matriss的函数Schröding可以推断出一些信息,以了解Atmospire中的分子如何吸收和发射辐射的辐射疗法。 )对天体物理学感兴趣(例如,CH5+)。水是一个重要的温室气体,因为水和二聚体的水元素很重要。这对于燃烧很重要。债券。孤立的分子均与分子的运动有关,它们将有助于化学家在科学和工程的其他领域中分析实验室。从众多国际合作所证明的机会中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carrington, Tucker其他文献

Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene
使用迭代本征解算器和交织的等级约简来计算具有十多个原子的分子的振动光谱:尿嘧啶和萘
  • DOI:
    10.1063/1.5039147
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas, Phillip S.;Carrington, Tucker;Agarwal, Jay;Schaefer, Henry F.
  • 通讯作者:
    Schaefer, Henry F.
Variational quantum approaches for computing vibrational energies of polyatomic molecules
  • DOI:
    10.1080/00268970802258609
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bowman, Joel M.;Carrington, Tucker;Meyer, Hans-Dieter
  • 通讯作者:
    Meyer, Hans-Dieter
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces

Carrington, Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carrington, Tucker', 18)}}的其他基金

New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair In Computational Quantum Dynamics
加拿大计算量子动力学研究主席
  • 批准号:
    CRC-2013-00067
  • 财政年份:
    2021
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Canada Research Chairs
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2021
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2020
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
  • 批准号:
    CRC-2013-00067
  • 财政年份:
    2020
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
  • 批准号:
    CRC-2013-00067
  • 财政年份:
    2019
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Canada Research Chairs
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2019
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of new methods for computing rovibrational spectra and rate constants
计算振动谱和速率常数新方法的开发和应用
  • 批准号:
    RGPIN-2014-05676
  • 财政年份:
    2018
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
  • 批准号:
    CRC-2013-00067
  • 财政年份:
    2018
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
  • 批准号:
    CRC-2013-00067
  • 财政年份:
    2017
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

基于免疫多肽组学对小细胞肺癌新靶点STMN1抗原表位的解析及在TCR-T治疗中的应用研究
  • 批准号:
    82303772
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新冠病毒核酸内切酶NSP15促进病毒免疫逃逸的分子机制与应用研究
  • 批准号:
    82304574
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
油菜花序有限分生变异的新分子机制及潜在应用研究
  • 批准号:
    32360497
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
RNF114介导CRYAA泛素化对晶状体蛋白稳态的保护机制及其相关新分子实体递送临床转化应用研究
  • 批准号:
    82371037
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
超分子外泌体用于肿瘤新抗原mRNA疫苗的制备及应用研究
  • 批准号:
    22305140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
  • 批准号:
    23KK0134
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Application of New Tools for Probing the Roles of Sphingolipids and Cholesterol in Influenza Virus Infection
应用新工具探索鞘脂和胆固醇在流感病毒感染中的作用
  • 批准号:
    10678459
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
Elucidating the critical role of Wee1 in GIST
阐明 Wee1 在 GIST 中的关键作用
  • 批准号:
    10681775
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
  • 批准号:
    10648346
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
  • 批准号:
    10668166
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了