Algebra

代数

基本信息

  • 批准号:
    1000219864-2010
  • 负责人:
  • 金额:
    $ 14.57万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Canada Research Chairs
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要-Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chernousov, Vladimir其他文献

The Impact of Metal-Based Nanoparticles Produced by Different Types of Underwater Welding on Marine Microalgae.
  • DOI:
    10.3390/toxics11020105
  • 发表时间:
    2023-01-22
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pikula, Konstantin;Kirichenko, Konstantin;Chernousov, Vladimir;Parshin, Sergey;Masyutin, Alexander;Parshina, Yulia;Pogodaev, Anton;Gridasov, Alexander;Tsatsakis, Aristidis;Golokhvast, Kirill
  • 通讯作者:
    Golokhvast, Kirill

Chernousov, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chernousov, Vladimir', 18)}}的其他基金

Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2021
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2020
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2018
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra
代数
  • 批准号:
    1000219864-2010
  • 财政年份:
    2017
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Canada Research Chairs
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2017
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra
代数
  • 批准号:
    1219864-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Canada Research Chairs
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丛代数的范畴化与散射图方法
  • 批准号:
    12301048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3-李代数的上同调理论及其应用
  • 批准号:
    12301034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
一类正规整表代数的研究
  • 批准号:
    12301021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
高次圏論への2つのアプローチ:幾何的な積と代数高次圏
高范畴论的两种方法:几何乘积和代数高范畴
  • 批准号:
    24KJ0126
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
教育の現代化における数学教育改革の歴史的展開
教育现代化中数学教育改革的历史发展
  • 批准号:
    23K22272
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了