Integrable systems in Geometry, Asymptotics and Inverse Problems

几何、渐近和反问题中的可积系统

基本信息

  • 批准号:
    RGPIN-2016-06660
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Integrable systems consist in a special class of overdetermined sets of partial differential (or difference) equations. They appear in several contexts in slightly different guises, including Random Matrix Theory, Moduli Spaces of Riemann surfaces and connections, Stochastic Processes and Inverse problems. A common thread to all these instances is the possibility of reformulation in terms of a particular boundary value problem for matrix-valued analytic functions, or what is now commonly referred to as a Riemann-Hilbert problem (RHP). The proposed research seeks to both advance the general understanding of RHPs as well as their application to several outstanding problems. Some of the specific goals include the study of the Poisson geometry underlying deformation theory of RHPs, extending also to RHPs on Riemann surfaces. In the context of intersection numbers on the moduli space of curves (Gromov-Witten invariants), the generating function can be associated also to a RHP and this has the benefit of leading to a rigorous asymptotic analysis. The generating function of intersection numbers between fundamental classes in the moduli space of curves is obtained from a matrix integral (Kontsevich); the integral is known to provide a formal solution of the KdV hierarchy. From works of G. Moore's, the formal connection with isomonodromic deformations (thus, indirectly, RHP) was observed. However an analytic approach is still missing. It is a goal to complete this description in terms of a suitable RHP for a matrix of fixed size of the Kontsevich integral and generalizations thereof. This in particular will shed light on non-formal properties of the generating function, such as the nonlinear Stokes' phenomenon (analytic resummation). Another application of RHPs is in solving inverse problems. Here the project focuses on the inverse (and forward) scattering theory of the nonlinear Schroedinger equation: in the semiclassical limit as Planck's constant is sent to zero is considered also in the study of elongated phases of Bose--Einstein condensates and in oceanography, where it has been proposed as describing the underlying mechanism of formation of the so-called rogue waves and for the ``three sister'' rogue waves. A second outstanding inverse problem originates in the area of medical imaging (tomography); in order to reduce irradiation of patient's tissue, the (ill-posed) problem of inversion with partial data must be addressed. Then the open question is the degree of instability of the reconstruction, which is translated into a question about asymptotic behavior of singular values and singular functions for a certain integral operator.
可集成的系统包括一类特殊的部分差分(或差异)方程组。它们出现在几种情况下以略有不同的形式出现,包括随机矩阵理论,Riemann表面和连接的模量空间,随机过程和反问题。所有这些实例的一个共同点是根据矩阵值分析函数的特定边界价值问题进行重新重新制定的可能性,或者现在通常称为Riemann-Hilbert问题(RHP)。拟议的研究旨在促进对RHP的一般理解,以及它们在几个杰出问题上的应用。 一些具体目标包括研究RHP的基础变形理论的泊松几何形状,并将其扩展到Riemann表面上的RHP。 在曲线模量空间(Gromov-witten不变性)上的相交数字的背景下,生成函数也可以与RHP相关联,这具有导致严格的渐近分析的好处。曲线模量空间中基本类之间的相交数的生成函数是从矩阵积分(Kontsevich)获得的;已知该积分提供了KDV层次结构的形式解决方案。从G. Moore's的作品中,观察到与等词异构变形的形式联系(因此,间接,RHP)。 但是,分析方法仍然缺少。它的目标是根据合适的RHP来完成此描述,以适用于Kontsevich积分和概括的固定尺寸的矩阵。这特别会阐明生成函数的非正式特性,例如非线性Stokes的现象(分析重新召集)。 RHP的另一个应用是解决反问题。 Here the project focuses on the inverse (and forward) scattering theory of the nonlinear Schroedinger equation: in the semiclassical limit as Planck's constant is sent to zero is considered also in the study of elongated phases of Bose--Einstein condensates and in oceanography, where it has been proposed as describing the underlying mechanism of formation of the so-called rogue waves and for the ``three sister'' rogue waves. 第二个杰出的逆问题起源于医学成像领域(断层扫描);为了减少患者组织的照射,必须解决(不适合)与部分数据的反转问题。然后,一个开放的问题是重建的不稳定性,这被转化为一个关于某个积分操作员的奇异值的渐近行为和奇异函数的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bertola, Marco其他文献

Universality for the Focusing Nonlinear Schrodinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquee Solution to Painleve I
Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
  • DOI:
    10.1103/physrevlett.130.127201
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bertola, Marco;Grava, Tamara;Orsatti, Giuseppe
  • 通讯作者:
    Orsatti, Giuseppe
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
L 2 中多区间有限希尔伯特变换相关线性系统的反演公式和范围条件
  • DOI:
    10.1002/mana.201800567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Katsevich, Alexander;Bertola, Marco;Tovbis, Alexander
  • 通讯作者:
    Tovbis, Alexander
Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach

Bertola, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bertola, Marco', 18)}}的其他基金

Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
  • 批准号:
    82302400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于网络互连的多处理机系统故障自诊断研究
  • 批准号:
    62302107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
地下水超采区承压含水层系统时序InSAR监测方法
  • 批准号:
    42374013
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
  • 批准号:
    2332342
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了