Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)

增强基于回归的分析,以满足建筑工程的应用研究需求

基本信息

  • 批准号:
    RGPIN-2016-04687
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Regression analysis results in simple equations to sufficiently represent the real world systems in Construction Engineering & Management (CEM), which can be effectively applied to tackle conventional “historical data” problems as well as emerging “big data” problems in connection with rapid developments in computing (mobile, social, cloud), sensor technologies, parametric design databases underlying Building Information Models (BIM), and the Internet of Things. Yet, regression has not been able to catch up with rapid technology advances and practical application needs. In the real world, problems can be most mind-boggling, and the data often contain noises or missing information, while the problem-solving methods are expected to be computationally simple, fast to calibrate, straightforward to explain the reasoning logic, and easy to keep current as new data become available. In order to be acceptable and truly effective, user experiences of data-based, analytics-driven decision support systems in CEM must not be perceived as tapping a “black box” or requiring much “trial and error”. The proposed research program will enhance linear regression based analytics in support of modeling, prediction and improvement of productivity and cost performances in CEM. In parallel to the pursuit of simplicity, the research will address following crucial challenges: (1) how to enhance the sophistication and intelligence of linear-regression-based analytics so as to match up with the “non-linearity” native to most complicated application problems in CEM? (2) How to streamline high-dimensional regression equations by selecting the most dominant input features while retaining model accuracy? (3) How to define uncertainties associated with point-value predictions by analytically characterizing model prediction errors? The ultimate goal is to develop a systematic, scientific framework that can be generally applied to “break and conquer” real-world application problems, thus being capable to lend timely, effective, and quantitative decision support for engineering and management professionals in CEM. New knowledge to be created will substantially enrich existing CEM education curricula in regards to teaching quantitative methods on both graduate and undergraduate levels. The proposed research program will train highly qualified personnel along with delivering game-changing solutions that will make significant impact in the industry. Other related areas involving data-driven decision making will also benefit from the proposed grant.
回归分析产生的简单方程足以代表建筑工程与管理(CEM)中的现实世界系统,可以有效地应用于解决传统的“历史数据”问题以及与快速发展相关的新兴“大数据”问题。然而,回归还未能跟上快速的技术进步和实际应用需求。 在现实世界中,问题可能是最令人难以置信的,并且数据通常包含噪声或缺失信息,而解决问题的方法期望计算简单、快速校准、简单地解释推理逻辑并且易于理解随着新数据的出现,要保持最新状态才能被接受并真正有效,CEM 中基于数据、分析驱动的决策支持系统的用户体验不得被视为利用“黑匣子”或需要大量的“反复试验”。 ”。 拟议的研究计划将增强基于线性回归的分析,以支持 CEM 中生产力和成本绩效的建模、预测和改进。在追求简单性的同时,该研究将解决以下关键挑战:(1)如何提高复杂性。和基于线性回归的分析的智能,以匹配 CEM 中最复杂的应用问题本身的“非线性”(2)如何通过选择最主要的输入特征来简化高维回归方程,同时保留? (3) 模型精度如何?通过分析表征模型预测误差来定义与点值预测相关的不确定性? 最终目标是开发一个系统的、科学的框架,可以普遍应用于“攻克”现实世界的应用问题,从而能够为CEM的工程和管理专业人员提供及时、有效、定量的决策支持。所创建的知识将极大地丰富研究生和本科生定量教学方法方面的现有 CEM 教育课程。拟议的研究计划将培训合格的人员,并提供改变游戏规则的解决方案,从而对行业产生重大影响。涉及数据驱动决策的领域也将受益来自拟议的赠款。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Ming其他文献

β-arrestin 2 is essential for fluoxetine-mediated promotion of hippocampal neurogenesis in a mouse model of depression
β-arrestin 2 对于氟西汀介导的抑郁小鼠模型海马神经发生的促进至关重要
  • DOI:
    10.1038/s41401-020-00576-2
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Li, Chen-xin;Zheng, Ying;Lu, Ming
  • 通讯作者:
    Lu, Ming
Inhibition of Parathyroid Hormone Secretion by Caffeine in Human Parathyroid Cells
Gradual daylength sensing coupled with optimum cropping modes enhances multi-latitude adaptation of rice and maize.
  • DOI:
    10.1016/j.xplc.2022.100433
  • 发表时间:
    2023-01-09
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Wang, Xiaoying;Han, Jiupan;Li, Rui;Qiu, Leilei;Zhang, Cheng;Lu, Ming;Huang, Rongyu;Wang, Xiangfeng;Zhang, Jianfu;Xie, Huaan;Li, Shigui;Huang, Xi;Ouyang, Xinhao
  • 通讯作者:
    Ouyang, Xinhao
Fusion plasmid enhanced the endemic extensively drug resistant Klebsiella pneumoniae clone ST147 harbored bla(OXA-48) to acquire the hypervirulence and cause fatal infection.
Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes.
  • DOI:
    10.1371/journal.pone.0004421
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wang, Dong;Lu, Ming;Miao, Jing;Li, Tingting;Wang, Edwin;Cui, Qinghua
  • 通讯作者:
    Cui, Qinghua

Lu, Ming的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Ming', 18)}}的其他基金

Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Data investigation and analytics development in support of plant maintenance operations planning
支持工厂维护运营规划的数据调查和分析开发
  • 批准号:
    530272-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Cost and schedule comparison and risk analysis for pile foundation systems
桩基础系统的成本和进度比较以及风险分析
  • 批准号:
    499236-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Plus Grants Program

相似国自然基金

基于图的高维线性回归问题的统计理论与牛顿型算法
  • 批准号:
    12301420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于孟德尔随机化法和随机回归模型建立纵向性状全转录组关联分析新方法
  • 批准号:
    32370675
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于Copula误差联合分布的高维回归模型的计量方法研究及其应用
  • 批准号:
    72373131
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于多组学对抗自回归神经网络的靶向药物敏感预测模型及应用研究
  • 批准号:
    82373682
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于回归树模型框架整合遗传连锁信息的DNA甲基化水平的预测方法与应用
  • 批准号:
    82304240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了