Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
基本信息
- 批准号:RGPIN-2016-04687
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regression analysis results in simple equations to sufficiently represent the real world systems in Construction Engineering & Management (CEM), which can be effectively applied to tackle conventional “historical data” problems as well as emerging “big data” problems in connection with rapid developments in computing (mobile, social, cloud), sensor technologies, parametric design databases underlying Building Information Models (BIM), and the Internet of Things. Yet, regression has not been able to catch up with rapid technology advances and practical application needs.
In the real world, problems can be most mind-boggling, and the data often contain noises or missing information, while the problem-solving methods are expected to be computationally simple, fast to calibrate, straightforward to explain the reasoning logic, and easy to keep current as new data become available. In order to be acceptable and truly effective, user experiences of data-based, analytics-driven decision support systems in CEM must not be perceived as tapping a “black box” or requiring much “trial and error”.
The proposed research program will enhance linear regression based analytics in support of modeling, prediction and improvement of productivity and cost performances in CEM. In parallel to the pursuit of simplicity, the research will address following crucial challenges: (1) how to enhance the sophistication and intelligence of linear-regression-based analytics so as to match up with the “non-linearity” native to most complicated application problems in CEM? (2) How to streamline high-dimensional regression equations by selecting the most dominant input features while retaining model accuracy? (3) How to define uncertainties associated with point-value predictions by analytically characterizing model prediction errors?
The ultimate goal is to develop a systematic, scientific framework that can be generally applied to “break and conquer” real-world application problems, thus being capable to lend timely, effective, and quantitative decision support for engineering and management professionals in CEM. New knowledge to be created will substantially enrich existing CEM education curricula in regards to teaching quantitative methods on both graduate and undergraduate levels. The proposed research program will train highly qualified personnel along with delivering game-changing solutions that will make significant impact in the industry. Other related areas involving data-driven decision making will also benefit from the proposed grant.
回归分析导致简单方程式可以充分代表建筑工程与管理中的现实世界系统(CEM),可以有效地用于解决传统的“历史数据”问题,以及与计算快速发展(移动,社交,云),传感器技术,参数设计数据库的“大数据”问题出现的“大数据”问题。但是,回归无法赶上快速技术的进步和实际应用需求。
在现实世界中,问题可能是令人难以置信的,数据通常包含噪音或丢失的信息,而问题解决方法的计算简单,快速校准,直接校准,可以简单地解释推理逻辑,并且随着新数据的可用性而易于保持最新。为了获得可接受且真正有效的,CEM中基于数据的,基于分析的决策支持系统的用户体验不得被视为敲击“黑匣子”或需要太多的“反复试验”。
提出的研究计划将增强基于线性回归的分析,以支持CEM中生产率和成本表现的建模,预测和提高。与对简单性的追求同时,该研究将解决以下挑战:(1)如何增强基于线性回归的分析的社会化和智能,以与CEM中最复杂的应用程序问题相匹配? (2)如何通过在保持模型精度的同时选择最主的输入特征来简化高维回归方程? (3)如何通过分析表征模型预测误差来定义与点值预测相关的不确定性?
最终目标是开发一个系统的,科学的框架,通常可以应用于“打破和征服”现实世界中的应用问题,从而有能力为CEM的工程和管理专业人员提供及时,有效和定量的决策支持。要创建的新知识将大大丰富现有的CEM教育课程,以在研究生和本科级别的教学定量方法方面。拟议的研究计划将培训高素质的人员,并提供改变游戏规则的解决方案,从而对行业产生重大影响。涉及数据驱动决策的其他相关领域也将从拟议的赠款中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, Ming其他文献
β-arrestin 2 is essential for fluoxetine-mediated promotion of hippocampal neurogenesis in a mouse model of depression
β-arrestin 2 对于氟西汀介导的抑郁小鼠模型海马神经发生的促进至关重要
- DOI:
10.1038/s41401-020-00576-2 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:8.2
- 作者:
Li, Chen-xin;Zheng, Ying;Lu, Ming - 通讯作者:
Lu, Ming
Inhibition of Parathyroid Hormone Secretion by Caffeine in Human Parathyroid Cells
- DOI:
10.1210/jc.2013-1466 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:5.8
- 作者:
Lu, Ming;Farnebo, Lars-Ove;Larsson, Catharina - 通讯作者:
Larsson, Catharina
Gradual daylength sensing coupled with optimum cropping modes enhances multi-latitude adaptation of rice and maize.
- DOI:
10.1016/j.xplc.2022.100433 - 发表时间:
2023-01-09 - 期刊:
- 影响因子:10.5
- 作者:
Wang, Xiaoying;Han, Jiupan;Li, Rui;Qiu, Leilei;Zhang, Cheng;Lu, Ming;Huang, Rongyu;Wang, Xiangfeng;Zhang, Jianfu;Xie, Huaan;Li, Shigui;Huang, Xi;Ouyang, Xinhao - 通讯作者:
Ouyang, Xinhao
Fusion plasmid enhanced the endemic extensively drug resistant Klebsiella pneumoniae clone ST147 harbored bla(OXA-48) to acquire the hypervirulence and cause fatal infection.
- DOI:
10.1186/s12941-022-00551-1 - 发表时间:
2023-02-14 - 期刊:
- 影响因子:5.7
- 作者:
Liu, Chao;Du, Pengcheng;Yang, Ping;Lu, Ming;Shen, Ning - 通讯作者:
Shen, Ning
Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes.
- DOI:
10.1371/journal.pone.0004421 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Wang, Dong;Lu, Ming;Miao, Jing;Li, Tingting;Wang, Edwin;Cui, Qinghua - 通讯作者:
Cui, Qinghua
Lu, Ming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, Ming', 18)}}的其他基金
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
- 批准号:
501012-2016 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
- 批准号:
501012-2016 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Data investigation and analytics development in support of plant maintenance operations planning
支持工厂维护运营规划的数据调查和分析开发
- 批准号:
530272-2018 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Engage Grants Program
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
- 批准号:
501012-2016 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Cost and schedule comparison and risk analysis for pile foundation systems
桩基础系统的成本和进度比较以及风险分析
- 批准号:
499236-2016 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
基于多组学对抗自回归神经网络的靶向药物敏感预测模型及应用研究
- 批准号:82373682
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于Copula误差联合分布的高维回归模型的计量方法研究及其应用
- 批准号:72373131
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
风险信念的形成机制及其经济后果研究:基于心理机制的断点回归设计
- 批准号:72303199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于整合多组学大数据并优化回归模型中收缩函数的奶牛基因组选择新方法研究
- 批准号:32302711
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于图的高维线性回归问题的统计理论与牛顿型算法
- 批准号:12301420
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
- 批准号:
RGPIN-2016-04687 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual