Positivity and Convexity in Algebraic Geometry

代数几何中的正性和凸性

基本信息

  • 批准号:
    RGPIN-2015-04776
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Although the origins of positivity and convexity are found in the natural total ordering on the real numbers, these basic structures emerge in several important and distinct ways within contemporary algebraic geometry. For instance, the theory of normal toric varieties over an algebraically closed field builds a robust dictionary between projective varieties and rational convex polytopes. In contrast, when working over a real closed field, the sections of a line bundle, whose evaluation at any real point is positive, form a convex cone that is rarely polyhedral. As a third example, Boij–Söderberg theory characterizes all of the cohomology groups for vector bundles on projective space via convex geometry. The broad aim of this research program is to understand the deep and subtle relations between these various incarnations of positivity and convexity. Because these fundamental problems connect many different areas of mathematics including algebraic geometry, commutative algebra, optimization, combinatorics, and convex geometry, advances will likely impact and influence a large community. The long-term goals are to discover new frameworks for positivity inside algebraic geometry and to refine our understanding of specific convex cones appearing in algebraic geometry. The research will produce new mathematical results and new open-source software tools. In the short-term, we will concentrate on the following three problems: (a) Create a comprehensive dictionary between projectivized torus-equivariant vector bundles over a complete toric variety and appropriate collections of convex polytopes. (b) Given any nonnegative form f of degree 2d on a real projective subvariety, develop effective bounds on the integers e for which there exists a sum of squares g of forms degree e such that the product fg is a sum of squares of forms of degree 2(d+e). (c) Invent new homological mechanisms for representing coherent sheaves on toric varieties as short complexes of arithmetically-free vector bundles (also known as direct sums of line bundles). The graduate students, postdoctoral fellows, and undergraduate students who contribute to this research program, will not only obtain valuable technical and scientific skills, but they will also become competent communicators.  With their training, they will be well-positioned for a variety of careers in the mathematical sciences.
尽管在实际数字上的自然总顺序中发现了积极性和凸度的起源,但这些基本结构以当代代数几何形状以几种重要和不同的方式出现。例如,在代数封闭场上的正常曲曲面理论建立了投射品种和理性凸多属性之间的强大词典。相反,当在实际闭合场上工作时,线束的部分(在任何实际点的评估都是正面的),形成很少是多面体的凸锥。作为第三个例子,Boij -Söderberg理论特征通过凸线上的矢量束的所有共同体组组。该研究计划的广泛目的是了解这些积极和凸性的各种化身之间的深厚和微妙的关系。因为这些基本问题将数学的许多不同领域连接起来,包括代数几何,交换代数,优化,组合和凸几何形状,因此进步可能会影响和影响大型社区。 长期目标是发现代数几何内部积极的新框架,并完善我们对代数几何形状出现的特定凸锥的理解。该研究将产生新的数学结果和新的开源软件工具。在短期内,我们将专注于以下三个问题: (a)在完整的感谢您的多种多样的凸层和适当的凸层杂音集合之间创建一个综合词典。 (b)如果在真实的投射亚变量上有任何非负数f度2d的非负形式,则在整数e上发展有效的界限。 (c)发明新的同源机制,用于代表托里克变化上的相干滑轮,作为算术载体束的短复合物(也称为直接束束总和)。 为这项研究计划做出贡献的研究生,博士后研究员和本科生,不仅将获得有价值的技术和科学技能,而且还将成为合格的沟通者。通过他们的培训,他们将在数学科学中的各种职业中得到充分的态度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Smith, Gregory其他文献

Heparin-derived supersulfated disaccharide inhibits allergic airway responses in sheep
  • DOI:
    10.1016/j.pupt.2013.12.001
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ahmed, Tahir;Smith, Gregory;Abraham, William M.
  • 通讯作者:
    Abraham, William M.
Kramers–Kronig relation in attosecond transient absorption spectroscopy
阿秒瞬态吸收光谱中的克莱默斯-克罗尼格关系
  • DOI:
    10.1364/optica.474960
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Leshchenko, Vyacheslav;Hageman, Stephen J.;Cariker, Coleman;Smith, Gregory;Camper, Antoine;Talbert, Bradford K.;Agostini, Pierre;Argenti, Luca;DiMauro, Louis F.
  • 通讯作者:
    DiMauro, Louis F.
Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis
  • DOI:
    10.1016/j.eplepsyres.2019.01.001
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Immonen, Riikka;Smith, Gregory;Grohn, Olli
  • 通讯作者:
    Grohn, Olli
Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1
  • DOI:
    10.1128/jvi.00559-19
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ramos, Irene;Smith, Gregory;Fernandez-Sesma, Ana
  • 通讯作者:
    Fernandez-Sesma, Ana
Early-life status epilepticus induces long-term deficits in anxiety and spatial learning in mice.
  • DOI:
    10.1016/j.ijep.2016.12.005
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smith, Gregory;Ahmed, Nowrin;Lugo, Joaquin N
  • 通讯作者:
    Lugo, Joaquin N

Smith, Gregory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Smith, Gregory', 18)}}的其他基金

Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Development and evaluation of novel pallets
新型托盘的开发与评估
  • 批准号:
    532007-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Engage Grants Program
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Under-utilized Canadian wood species for strand based products
用于线材产品的加拿大木材品种未得到充分利用
  • 批准号:
    476414-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

偏微分方程解的水平集的凸性及常秩定理的几何应用
  • 批准号:
    12301237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
平面三角剖分flip graph的强凸性研究
  • 批准号:
    12301432
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
微电晕驱动纳米颗粒选择性去除表面凸峰机理及其调控机制研究
  • 批准号:
    52365056
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
几类新型广义凸性与对数控制不等式及其应用研究
  • 批准号:
    12361013
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
一般凸区域上退化Monge-Ampère方程解的整体正则性
  • 批准号:
    12301250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity in Arakelov Geometry
阿拉克洛夫几何中的积极性
  • 批准号:
    16K17559
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了