Methods for analysis of space-time data: a Bayesian approach

时空数据分析方法:贝叶斯方法

基本信息

  • 批准号:
    RGPIN-2014-06359
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research program will address current concerns and raise the quality of geographic research in Canada. Popularity of web technology and mobile devices, such as iPhone or iPad, has posed new challenges to many disciplines in Canada and elsewhere. Data associated with individuals or events can be collected anytime. They contain information about where (geographic coordinates or addresses) and when (hour, minute or second) exactly an event (what) occurred. We are aware that the information can be used to generate knowledge about events that are or will be happening around us at any point in time, which could have a ground-breaking impact on our life, yet we do not know how. Methods developed for analyzing data that contain precise location and time information, referred to as space-time (ST) data, have focused on environmental and climatic sciences, but less so on social, health, or economic sciences. This proposed research program aims to address the above concerns. Bayesian, a relatively new approach of geographical analysis will be adopted to develop statistical methods for analysis of ST data in social, health, or economic sciences. The proposed program consists of short and long term goals of research and training. Short-term goals are to develop quantitative methodologies that would enhance current capabilities to analyze ST data. For instance, in terms of safety, the methods developed will enable the following questions to be answered accurately: Are changes or trends of violence crime in my local areas significantly different from others? If so, what are the associated (local) risk factors that might have caused the difference? Where are the areas that are significantly less safe at a specific season, month, day of the week or hour of the day? What is the probability of my neighbourhood being burgled in the summer? Currently, it is not possible to provide accurate and statistically-sound answers to the above questions. Long-term goals are to extend the ST methods to enable real-time analysis. Questions that can be addressed then will include what is the chance of being a victim or to be rescued at my current location and time (in case of a disaster) according to the real-time response from my smartphone? Through my current NSERC grant, I have established a research team to develop methods for spatial and ST analysis. Our team has published over ten peer-reviewed journal articles on related methods in the past three years. Upon renewal of the grant, more students will be trained to develop and apply the methods using Canadian data. A research centre on ST analysis in Canada could materialize in the longer term. Novel methodologies for analysis of ST data resulted from the research could transform the approach that researchers in many disciplines use and analyze geographic information. Many fields are facing the “Big Data Challenge” – the need for new methods of data analysis including ST analyses is compelling. Some practical significance of the program include 1) enable statistically-sound analysis of ST data; 2) prepare for the changing methods of data collection by mobile devices including the “Google glass”; and 3) Canada is no longer relying on the census long form to collect socio-economic data. Population or other surveys can be conducted via mobile devices to collect ST data that can be analyzed using the methods developed. Surveillance systems for public health and safety in situations of flooding, earthquake, or other crisis can benefit from such modern ways of data collection provided that sound methods of ST analysis are in place. Apart from geographic information science and other fields in Canada that conduct geographical research, global health and safety will advance through the research.
拟议的研究计划将解决当前的关注点,并提高加拿大地理研究的质量。 Web技术和移动设备(例如iPhone或iPad)的受欢迎程度为加拿大和其他地方的许多学科带来了新的挑战。可以随时收集与个人或事件相关的数据。它们包含有关地理位置(地理坐标或地址)以及(小时,分钟或第二个)完全发生事件(什么)的信息。我们知道,这些信息可用于在任何时间点在我们周围发生的事件产生知识,这可能会对我们的生活产生突破性的影响,但我们不知道如何。为分析的数据开发的方法,其中包含精确的位置和时间信息(称为时空数据(ST)数据),重点关注环境和文化科学,而不是社会,健康或经济科学。该建议的研究计划旨在解决上述问题。贝叶斯(Bayesian)将采用一种相对的地理分析方法来开发统计方法,以分析社会,健康或经济科学中的ST数据。 拟议的计划包括研究和培训的短期和长期目标。短期目标是开发定量方法,以增强当前分析ST数据的能力。例如,就安全性而言,开发的方法将使以下问题准确地回答:我当地的暴力犯罪的变化或趋势是否与其他问题有很大不同?如果是这样,可能导致差异的相关(本地)风险因素是什么?在特定的季节,一个月,一周或一天中的一个月,一天或小时的特定季节,在哪里安全的区域?夏天,我的邻居被盗窃的可能性是多少?目前,无法为上述问题提供准确且统计上的答案。长期目标是扩展ST方法以实现实时分析。然后可以解决的问题将包括成为受害者的机会,或者根据我的智能手机的实时响应,在我当前的地点和时间(如果发生灾难的情况下)被救出的机会是什么? 通过当前的NSERC赠款,我建立了一个研究团队来开发空间和ST分析的方法。在过去三年中,我们的团队发表了有关相关方法的十篇经过同行评审的期刊文章。续签赠款后,将培训更多的学生使用加拿大数据来开发和应用这些方法。从长远来看,加拿大的ST分析研究中心可以实现。 研究产生的ST数据分析的新方法可以改变许多学科中研究人员使用和分析地理信息的方法。许多领域都面临着“大数据挑战” - 对包括ST分析在内的新方法分析的需求令人信服。该计划的某些实际意义包括1)对ST数据进行统计分析; 2)为包括“ Google Glass”在内的移动设备收集数据收集的不断变化的方法; 3)加拿大不再依靠长期的人口普查来收集社会经济数据。可以通过移动设备进行人口或其他调查,以收集可以使用开发的方法来分析的ST数据。在洪水,地震或其他危机的情况下,针对公共卫生和安全的监视系统可以从这种现代数据收集方式中受益,前提是有ST分析的合理方法。除了进行地理研究的地理信息科学和加拿大其他领域外,全球健康与安全还将通过这项研究前进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Law, Jane其他文献

Geographic Clustering of Admissions to Inpatient Psychiatry among Adults with Cognitive Disorders in Ontario, Canada: Does Distance to Hospital Matter?
Social support availability is positively associated with memory in persons aged 45-85 years: A cross-sectional analysis of the Canadian Longitudinal Study on Aging
  • DOI:
    10.1016/j.archger.2019.103962
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Oremus, Mark;Tyas, Suzanne L.;Law, Jane
  • 通讯作者:
    Law, Jane
Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level
  • DOI:
    10.1007/s10940-013-9194-1
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Law, Jane;Quick, Matthew;Chan, Ping
  • 通讯作者:
    Chan, Ping
Bayesian spatial methods for small-area injury analysis: a study of geographical variation of falls in older people in the Wellington-Dufferin-Guelph health region of Ontario, Canada
  • DOI:
    10.1136/injuryprev-2011-040068
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chan, Wing C.;Law, Jane;Seliske, Patrick
  • 通讯作者:
    Seliske, Patrick
A Bayesian spatial shared component model for identifying crime-general and crime-specific hotspots
  • DOI:
    10.1080/19475683.2020.1720290
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Law, Jane;Quick, Matthew;Jadavji, Afraaz
  • 通讯作者:
    Jadavji, Afraaz

Law, Jane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Law, Jane', 18)}}的其他基金

Joint modeling of multiple outcomes over space and time (JMMOST): A Bayesian approach
空间和时间上多种结果的联合建模 (JMMOST):贝叶斯方法
  • 批准号:
    RGPIN-2022-03740
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
  • 批准号:
    RGPIN-2014-06359
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
  • 批准号:
    RGPIN-2014-06359
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
  • 批准号:
    RGPIN-2014-06359
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
  • 批准号:
    RGPIN-2014-06359
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
  • 批准号:
    RGPIN-2014-06359
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
  • 批准号:
    371625-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
  • 批准号:
    371625-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
  • 批准号:
    371625-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing spatial analysis methodologies using a bayesian approach: combining individual and aggregated data in small area studies
使用贝叶斯方法推进空间分析方法:在小区域研究中结合个体数据和聚合数据
  • 批准号:
    371625-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

多尺度代谢互作网络分析新方法应用于阿尔兹海默病空间代谢组学研究
  • 批准号:
    82372087
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于形态特征量化分析的寒地城市街区空间健康性能影响机理及优化设计方法研究
  • 批准号:
    52308018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间转录组数据图神经网络整合分析的方法和应用研究
  • 批准号:
    82373680
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
度量空间中复杂数据的核函数建模方法及其分析
  • 批准号:
    12371277
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于趋势转折检测新方法的全球气温年代际趋势空间差异特征分析与模式评估
  • 批准号:
    42305187
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Brain glycosphingolipids and Alzheimer's disease
脑鞘糖脂与阿尔茨海默病
  • 批准号:
    10738379
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
NSF-BSF: Computational Methods for Shape Space Analysis in Structural Biology
NSF-BSF:结构生物学中形状空间分析的计算方法
  • 批准号:
    2309782
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了