Developing novel heuristic methods for integrative computational biology

开发综合计算生物学的新颖启发式方法

基本信息

  • 批准号:
    203833-2013
  • 负责人:
  • 金额:
    $ 3.21万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Many theoretically excellent algorithms are inadequate for the high-throughput biological domains, due to the scale or complexity of the problem, or due to unrealistic assumptions. Forming intelligent hypotheses and developing computational models of biological systems without the possibility to evaluate them limits the potential to derive realistic models. We propose to improve scalability, robustness, sensitivity and specificity of pattern discovery and prediction algorithms, and integrate them to support a methodical approach to the "systems biology" analysis and visualization of high-throughput data in cancer research and intelligent decision support in medical informatics. The long term goal is to develop and then apply novel tools for the integration, analysis and interpretation of complex biomedical data with aim to identify testable hypothesis and build useful models. The short term goals include 1) developing scalable, probabilistic, network-based algorithm for comprehensive identification of effective biomarkers for early disease detection, improved diagnosis and prognosis, and treatment response prediction; 2) developing scalable network inference approaches to predict combination treatment options using drug target databases and screens combined with networks of physical and functional protein interactions; 3) developing planning approaches for drug synthesis. Using combination of heuristic algorithms and machine learning based parameter optimization will help to reduce search space. Probabilistic modeling will help to handle incomplete, contradictory and ambiguous information in an automated fashion. Ontologies will be used to support multiple viewpoints and contexts. Additional attention will be paid to ensure the tools are interactive, seamlessly integrate diverse data sources, and they have to scale to ultra-high dimensions, support multimodal and rapidly evolving representations, and handle incompleteness of domain theories. Performance evaluation will be carried out on cancer informatics applications, using multiple publicly available datasets. The results of this research will not only generate novel algorithms, but importantly, their application will lead to fathoming cancer at a molecular level, eventually improving quality and reducing cost of cancer diagnosis and treatment by identifying prognostic and predictive signatures that enable tailoring treatment to each individual patient. The research will advance computational approaches and their applicability to high-throughput systems biology applications. An important function of this proposal is the training of bioinformatics professionals for which there is still a severe deficit. We will release tools and resources for free academic use to enable even broader benefit.
由于问题的规模或复杂性或由于不切实际的假设,许多理论上出色的算法对于高通量生物域而言不足。形成智能假设并开发生物系统的计算模型,而无需评估它们的可能性限制了推导现实模型的潜力。我们建议提高模式发现和预测算法的可伸缩性,鲁棒性,敏感性和特异性,并将它们整合起来,以支持对“系统生物学”分析和可视化癌症研究中高通量数据的有条理方法,以及医学信息学中的智能决策支持。 长期目标是开发并应用新颖的工具,以集成,分析和解释复杂的生物医学数据,旨在识别可检验的假设并构建有用的模型。短期目标包括1)开发可扩展的,概率的,基于网络的算法,以全面鉴定有效的生物标志物,以提高早期疾病检测,改善诊断和预后以及治疗反应预测; 2)开发可扩展的网络推理方法,使用药物目标数据库和筛选结合了物理和功能蛋白质相互作用的网络来预测组合治疗方案; 3)开发药物合成的计划方法。 使用启发式算法和基于机器学习的参数优化的组合将有助于减少搜索空间。概率建模将有助于以自动化方式处理不完整,矛盾和模棱两可的信息。本体将用于支持多个观点和上下文。将要引起更多的关注,以确保工具是互动的,无缝整合了各种数据源,并且必须扩展到超高维度,支持多模式和快速发展的表示形式,并处理域理论的不完整。 绩效评估将在癌症信息应用上进行,使用多个公开 可用数据集。这项研究的结果不仅会产生新颖的算法,而且重要的是,它们的应用将在分子水平上导致癌症的癌症,最终通过识别预后和预测性特征来提高质量并降低癌症诊断和治疗的成本,从而促进每个患者的治疗。 该研究将推进计算方法及其对高通量系统生物学应用的适用性。该提案的一个重要功能是培训生物信息学专业人员仍然存在严重赤字的培训。我们将发布工具和资源以免费学术用途,以使更广泛 益处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jurisica, Igor其他文献

Effect of autotaxin inhibition in a surgically-induced mouse model of osteoarthritis.
  • DOI:
    10.1016/j.ocarto.2020.100080
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Datta, Poulami;Gandhi, Rajiv;Nakamura, Sayaka;Lively, Starlee;Rossomacha, Evgeny;Potla, Pratibha;Shestopaloff, Konstantin;Endisha, Helal;Pastrello, Chiara;Jurisica, Igor;Rockel, Jason S;Kapoor, Mohit
  • 通讯作者:
    Kapoor, Mohit
MirDIP 5.2: tissue context annotation and novel microRNA curation.
  • DOI:
    10.1093/nar/gkac1070
  • 发表时间:
    2023-01-06
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Hauschild, Anne-Christin;Pastrello, Chiara;Ekaputeri, Gitta Kirana Anindya;Bethune-Waddell, Dylan;Abovsky, Mark;Ahmed, Zuhaib;Kotlyar, Max;Lu, Richard;Jurisica, Igor
  • 通讯作者:
    Jurisica, Igor
PathDIP 5: improving coverage and making enrichment analysis more biologically meaningful.
  • DOI:
    10.1093/nar/gkad1027
  • 发表时间:
    2024-01-05
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Pastrello, Chiara;Kotlyar, Max;Abovsky, Mark;Lu, Richard;Jurisica, Igor
  • 通讯作者:
    Jurisica, Igor
Comparative network analysis via differential graphlet communities.
  • DOI:
    10.1002/pmic.201400233
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wong, Serene W. H.;Cercone, Nick;Jurisica, Igor
  • 通讯作者:
    Jurisica, Igor
Network-based characterization of drug-regulated genes, drug targets, and toxicity
  • DOI:
    10.1016/j.ymeth.2012.06.003
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Kotlyar, Max;Fortney, Kristen;Jurisica, Igor
  • 通讯作者:
    Jurisica, Igor

Jurisica, Igor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jurisica, Igor', 18)}}的其他基金

Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel heuristic methods for integrative computational biology
开发综合计算生物学的新颖启发式方法
  • 批准号:
    203833-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel heuristic methods for integrative computational biology
开发综合计算生物学的新颖启发式方法
  • 批准号:
    203833-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel heuristic methods for integrative computational biology
开发综合计算生物学的新颖启发式方法
  • 批准号:
    203833-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel heuristic methods for integrative computational biology
开发综合计算生物学的新颖启发式方法
  • 批准号:
    203833-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Techna 2012: Information and Communication Technologies for Health
Techna 2012:健康信息和通信技术
  • 批准号:
    436800-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Strategic Workshops Program

相似国自然基金

novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
    32171163
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Fellowship Award
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了