Erosive jet micro-machining and vibratory surface finishing: optimization and modeling

侵蚀喷射微加工和振动表面精加工:优化和建模

基本信息

  • 批准号:
    RGPIN-2014-03608
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research pertains to two manufacturing processes: A) erosive jet micro-machining and B) vibratory surface finishing. Both processes involve the controlled application of erosion to remove material, and can also be used to change the surface properties of metals, ceramics and plastics. Erosive jet micro-machining uses either high-speed jets of air with abrasive particles (abrasive jet micro-machining, AJM) or jets of water with abrasive particles (abrasive slurry jet micro-machining, ASJM). Both techniques have great potential as versatile, low-cost, environmentally-friendly approaches to the fabrication of small-scale features that are difficult to make with traditional techniques such as milling and acid etching. Potential applications span an extremely wide range from aerospace (e.g. turbine blades) to components used in micro-fluidics, optoelectronics and microelectronics. Moreover, AJM and ASJM do not involve hazardous etching chemicals, and do not suffer from tool wear, vibration, or heating. The proposed research will explore the possibility of the AJM of glass and ceramic components without the use of erosion resistant masks, in a “direct-write” mode. This would be a major breakthrough in reducing costs and machining times, but the blast zone needs to be more highly focused to make this a reality. ASJM can already make smaller features, since it uses a liquid abrasive slurry jet, and we plan to extend our existing work on the use of long-chain polymer additives in the abrasive slurry to increase the focusing of the jet. This will be of significant value in the proposed research on the micro-machining of metallic components, particularly those advanced ultra-hard materials that are used to achieve wear resistance and high strength, often at extreme temperatures. These materials are very difficult to micro-machine using other approaches. Therefore, another part of our plan is to explore the possibility that ASJM can be combined with electro-chemical micro-machining (ECM, a type of focused corrosion) to accelerate the rate at which such metallic materials can be machined. Vibratory surface finishing is a widely-used manufacturing process for deburring, polishing, burnishing, texturing, hardening and cleaning metal, ceramic and plastic parts. A bed of solid particles (typical dimension 1 cm) is fluidized using vibrations and develops a circulatory flow into which parts are entrained and become subject to the action of the impacting media. The proposed research will develop models to describe the relationships between the local particle impact velocity and the many process parameters, such as the shape of the particles and the vibrations of the container walls. This information concerning the particle impact velocities is of fundamental importance to the prediction of the rate and extent of surface finishing. This could be of significant benefit given that there are in excess of 2,000 vibratory finishing machines in Ontario alone, used in a wide variety of industries and applications such as removing burrs in steel stampings, parting lines in metal and plastic castings, hardening and texturing in high-voltage electrical connectors, polishing of plastics and metals, and parts cleaning (personal communications with Dr. L. Nichol, Vibra Finish Ltd.). Furthermore, aspects of the research will be applicable to a variety of related processes involving erosive wear and the impact of flowing granular media (e.g. abrasive flow machining, fluidized bed machining, centrifugal disk finishing, polishing and tumbling, drag finishing).
拟议的研究与两个制造过程有关:a)侵蚀性喷射微型缓存和b)振动表面饰面。这两个过程都涉及侵蚀以去除材料的受控应用,也可以用于改变金属,陶瓷和塑料的表面特性。侵蚀性喷射微型缓冲使用带有磨料颗粒(磨蚀性喷射微型机械,AJM)的高速空气或带有磨料颗粒的水(磨料浆料喷射微型处理,ASJM)。这两种技术都具有极大的潜力,即用于制造小尺度特征的多功能,低成本,环保的方法,这些特征很难用铣削和酸蚀刻等传统技术制造。潜在的应用范围很广,从航空航天(例如涡轮叶片)到微氟,光电和微电子的组件。此外,AJM和ASJM不涉及危险的蚀刻化学物质,也不遭受工具磨损,振动或加热的困扰。拟议的研究将探索在“直接作用”模式下,不使用抗侵蚀性口罩的玻璃和陶瓷成分AJM的可能性。这将是减少成本和加工时间的重大突破,但是爆炸带需要更加专注才能使它成为现实。 ASJM已经可以制造较小的功能,因为它使用了液体磨料浆料喷气机,我们计划扩展我们在磨料浆中使用长链聚合物成瘾的现有工作,以增加喷气机的焦点。这在拟议的关于金属组件的微观测量的研究中,尤其是那些用于实现耐磨性和高强度的高级超硬材料,通常是在极端温度下。这些材料很难使用其他方法微动。因此,我们计划的另一部分是探索可以将ASJM与电化学微型机械合并(ECM,一种聚焦腐蚀)相结合的可能性,以加速可以加速这种金属材料的速率。振动表面精加工是一种广泛使用的制造过程,用于剥削,抛光,抛光,纹理,硬化和清洁金属,陶瓷和塑料零件。使用病毒将固体颗粒(典型尺寸1 cm)的床(典型尺寸1 cm)流化,并形成一个电路流,其中零件被纳入并受到影响介质的作用。拟议的研究将开发模型来描述局部粒子冲击速度与许多过程参数之间的关系,例如粒子的形状和容器壁的病毒。有关粒子影响速度的此信息对于预测表面饰面的速度和程度至关重要。鉴于仅在安大略省就有超过2,000台振动饰面机,这可能会带来重大好处。仅在各种各样的行业中使用,以及诸如在钢制上卸下钢筋,在金属和塑料铸件中分配线条,在高压电连接器中进行硬化和纹理的构造和纹理,塑料和金属的抛光剂,以及vib nickra coildra nich l. nich nich nich nich nich nich nich nich nich nich nich nich nich nich nichich l. nichich。此外,该研究的各个方面将适用于涉及侵蚀磨损的各种相关过程以及流动颗粒介质的影响(例如,磨料流加工,流化的床加工,离心盘饰面,抛光和翻滚,阻力涂层)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spelt, Jan其他文献

Spelt, Jan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spelt, Jan', 18)}}的其他基金

Erosive jet micro-machining and vibratory surface finishing: optimization and modeling
侵蚀喷射微加工和振动表面精加工:优化和建模
  • 批准号:
    RGPIN-2014-03608
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Erosive jet micro-machining and vibratory surface finishing: optimization and modeling
侵蚀喷射微加工和振动表面精加工:优化和建模
  • 批准号:
    RGPIN-2014-03608
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Erosive jet micro-machining and vibratory surface finishing: optimization and modeling
侵蚀喷射微加工和振动表面精加工:优化和建模
  • 批准号:
    RGPIN-2014-03608
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
High strain rate fracture of solder joints and underfill adhesives
焊点和底部填充粘合剂的高应变率断裂
  • 批准号:
    401218-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Creep modeling of precision adhesive joints in opto-electronic devices
光电器件中精密粘合接头的蠕变建模
  • 批准号:
    463690-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Erosive jet micro-machining and vibratory surface finishing: optimization and modeling
侵蚀喷射微加工和振动表面精加工:优化和建模
  • 批准号:
    RGPIN-2014-03608
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Creep modeling of precision adhesive joints in opto-electronic devices
光电器件中精密粘合接头的蠕变建模
  • 批准号:
    463690-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
High strain rate fracture of solder joints and underfill adhesives
焊点和底部填充粘合剂的高应变率断裂
  • 批准号:
    401218-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Applications of controlled erosion: vibratory finishing and abrasive jet micro-machining
控制侵蚀的应用:振动精加工和磨料喷射微加工
  • 批准号:
    43506-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
High Strain Rate Fracture of Solder Joints and Underfill Adhesives
焊点和底部填充胶的高应变率断裂
  • 批准号:
    401218-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

液膜基底电喷射微纳3D打印机理、规律及应用研究
  • 批准号:
    52375348
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多场耦合阶梯喷射微三角区柔性复合纤维滑移机理及制备机构研究
  • 批准号:
    52275265
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
微通道内微气泡喷射沸腾强化传热及流动不稳定性调控机理研究
  • 批准号:
    U2241252
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
多场耦合阶梯喷射微三角区柔性复合纤维滑移机理及制备机构研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
砂型3D打印头全耦合动力学与微滴喷射机理及成形质量影响机制研究
  • 批准号:
    12232013
  • 批准年份:
    2022
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目

相似海外基金

Space performance correction for micro gas jet nozzles contributing to precise position control of spacecraft
微型气体喷嘴的空间性能校正有助于航天器的精确位置控制
  • 批准号:
    23K19099
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Micro-scale Additive Manufacturing (3D Printing) of High-Temperature Strain Sensors on Non-Planar Surfaces of Jet Engine Components
喷气发动机部件非平面表面高温应变传感器的微型增材制造(3D 打印)
  • 批准号:
    576693-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alliance Grants
Numerical Analysis of Noise Reduction of Supersonic Jet by Micro Disturbance Using Beat Phenomena between Unstable Waves
利用不稳定波间拍频现象微扰动降低超音速射流噪声的数值分析
  • 批准号:
    22K03902
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of noble reaction control technology by using ink-jet droplets
开发利用喷墨液滴的高贵反应控制技术
  • 批准号:
    20H02516
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
最適な移植脂肪作製を目指して~採取・処理の違いによる細胞ダメージ機序の解明~
以最佳的移植脂肪生产为目标~阐明因采集和加工的差异而导致的细胞损伤机制~
  • 批准号:
    20K18427
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了