The physical basis of structure formation in biomolecules: measuring energy landscapes for protein and nucleic acid folding using single-molecule force spectroscopy
生物分子结构形成的物理基础:使用单分子力谱测量蛋白质和核酸折叠的能量景观
基本信息
- 批准号:342143-2013
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The folding of biopolymers like proteins, DNA, and RNA into specific structures lies at the heart of their diverse functionality, yet we are still unable reliably to predict structure from sequence--the "folding problem" remains a grand challenge in modern science. Energy landscape theory provides the fundamental physical framework for understanding folding. In principle, all folding phenomena can be predicted from the shape of the landscape, but landscape profiles are very difficult to measure experimentally, with only a handful ever published. As a result, landscape theory is typically used only qualitatively. This project will apply the methods I recently developed and validated for measuring landscape profiles in single molecules to demonstrate that landscapes can be used to describe and predict folding phenomena quantitatively, establishing landscape analysis as an essential tool of experimental biophysics. Single DNA, RNA, and protein molecules will be held under tension by laser tweezers and their length measured with high precision as they repeatedly unfold and refold. From these measurements we will determine the energy as a function of the length as the molecule folds, thereby recovering the shape of the landscape. We will first test the basic notion that folding can be described well in terms of motion over a one-dimensional landscape. We will then investigate the level of "friction" that sets the speed limit for folding, studying how this may depend on the position in the landscape and the topology of the structure being formed. Finally, we will measure the time spent during the structural transition itself, which provides a unique window into the otherwise invisible microscopic processes taking place during folding. These three specific aims are tightly integrated into a research program designed both to understand the fundamental processes governing folding, and to establish landscape theory as a way to make reliable, quantitative predictions. The results will have applications in a wide range of areas, from enzyme function and gene regulation to diseases caused by incorrectly-folded proteins such as Alzheimer's and mad cow disease.
将蛋白质,DNA和RNA等生物聚合物折叠为特定结构是其多样化功能的核心,但是我们仍然无法可靠地从顺序中预测结构 - “折叠问题”仍然是现代科学中的巨大挑战。能源景观理论提供了理解折叠的基本物理框架。原则上,可以从景观的形状中预测所有折叠现象,但是景观剖面很难在实验中测量,只有少数出版。结果,景观理论通常仅在定性上使用。该项目将应用我最近开发和验证的方法,用于测量单分子中的景观谱,以证明景观可用于定量描述和预测折叠现象,从而确立景观分析作为实验生物物理学的必不可少的工具。单个DNA,RNA和蛋白质分子将在激光镊子下保持在张力下,其长度在反复展开和重新分配时以高精度测量。从这些测量值中,我们将确定能量作为分子折叠的长度的函数,从而恢复景观的形状。我们将首先测试基本的观念,即在一维景观上可以通过运动很好地描述折叠。然后,我们将研究设定折叠速度限制的“摩擦”水平,研究这可能如何取决于景观中的位置以及所形成的结构的拓扑。最后,我们将测量在结构过渡本身中所花费的时间,该时间为折叠期间发生的原本看不见的显微镜过程提供了独特的窗口。这三个特定目标被紧密整合到旨在了解有关折叠的基本过程的研究计划中,又是建立景观理论作为做出可靠,定量预测的一种方式。结果将在广泛的区域中应用,从酶功能和基因调节到由阿尔茨海默氏症和疯牛病等错误折叠蛋白引起的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woodside, Michael其他文献
Woodside, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Woodside, Michael', 18)}}的其他基金
Direct measurements of transition paths in the folding of single biomolecules using force spectroscopy
使用力谱直接测量单个生物分子折叠中的转变路径
- 批准号:
RGPIN-2018-04673 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Direct measurements of transition paths in the folding of single biomolecules using force spectroscopy
使用力谱直接测量单个生物分子折叠中的转变路径
- 批准号:
RGPIN-2018-04673 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Direct measurements of transition paths in the folding of single biomolecules using force spectroscopy
使用力谱直接测量单个生物分子折叠中的转变路径
- 批准号:
RGPIN-2018-04673 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Direct measurements of transition paths in the folding of single biomolecules using force spectroscopy
使用力谱直接测量单个生物分子折叠中的转变路径
- 批准号:
RGPIN-2018-04673 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Single-molecule mass photometry to probe the competition between protein aggregation and native folding
单分子质量光度法探测蛋白质聚集和天然折叠之间的竞争
- 批准号:
RTI-2020-00301 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Research Tools and Instruments
Direct measurements of transition paths in the folding of single biomolecules using force spectroscopy
使用力谱直接测量单个生物分子折叠中的转变路径
- 批准号:
RGPIN-2018-04673 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
The physical basis of structure formation in biomolecules: measuring energy landscapes for protein and nucleic acid folding using single-molecule force spectroscopy
生物分子结构形成的物理基础:使用单分子力谱测量蛋白质和核酸折叠的能量景观
- 批准号:
342143-2013 - 财政年份:2017
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
The physical basis of structure formation in biomolecules: measuring energy landscapes for protein and nucleic acid folding using single-molecule force spectroscopy
生物分子结构形成的物理基础:使用单分子力谱测量蛋白质和核酸折叠的能量景观
- 批准号:
342143-2013 - 财政年份:2015
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Ultra-stable, high-bandwidth measurement platform for high-precision studies of rapid conformational dynamics in single biomolecules
超稳定、高带宽测量平台,用于单个生物分子快速构象动力学的高精度研究
- 批准号:
RTI-2016-00172 - 财政年份:2015
- 资助金额:
$ 3.79万 - 项目类别:
Research Tools and Instruments
The physical basis of structure formation in biomolecules: measuring energy landscapes for protein and nucleic acid folding using single-molecule force spectroscopy
生物分子结构形成的物理基础:使用单分子力谱测量蛋白质和核酸折叠的能量景观
- 批准号:
342143-2013 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
醇类燃料分子结构对双燃料发动机碳烟生成和演变规律影响的基础研究
- 批准号:52306164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级结构过渡金属簇/镍基氮氧化物异质结构调控及氢-氧燃料电池应用基础研究
- 批准号:52363028
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
家蚕Met介导保幼激素信号传导的结构基础及分子机制研究
- 批准号:32370517
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
花生主要过敏原 Ara h 3 致敏的结构生物学基础
- 批准号:32372441
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Structural and mechanistic basis of channelrhodopsin function
视紫红质通道功能的结构和机制基础
- 批准号:
10566779 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Molecular Basis of Pathogenic Cascades in ALS/FTD Initiated from C9orf72 Hexanucleotide Repeat Expansion
C9orf72 六核苷酸重复扩增引发 ALS/FTD 致病级联的分子基础
- 批准号:
10512236 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Signaling control and cellular basis of craniofacial morphogenesis and congenital disease
颅面形态发生和先天性疾病的信号控制和细胞基础
- 批准号:
10599976 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Biophysical and Neural Basis of Focused Ultrasound Stimulation
聚焦超声刺激的生物物理和神经基础
- 批准号:
10415733 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Deconstructing and recapitulating the genetic basis of gene regulatory network redeployment
解构和概括基因调控网络重新部署的遗传基础
- 批准号:
10700136 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别: