Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
基本信息
- 批准号:238949-2011
- 负责人:
- 金额:$ 0.73万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since M. Gelfand's pioneer work on normed rings was published in 1941, Banach algebra theory has become a major field in functional analysis. The theory, standing between analysis and algebra in its nature, has had a deep influence upon modern mathematics. The proposed research will focus on topological and algebraic structures of Banach algebras, their second duals and their ideals. We will also investigate the amenability properties and fixed point properties of semigroups. The study of cohomology in Banach algebras began in 1970s. Results achieved on this subject often represent significant progress in the development of Banach algebra theory. Cohomology studies the difference, in terms of cohomology groups, of the spaces of coboundaries and cocycles. In tradition, coboundaries and cocycles are treated as just linear spaces, and hence a cohomology group is simply an algebraic object. However, these spaces may be naturally equipped with various topologies. One can consider "topological" cohomology for Banach algebras. This is the direction in which I will explore for the program. The recently introduced various types of generalized amenability for Banach algebras may be interpreted as "topological triviality" of the first cohomology group with respect to specific topologies. There are many open problems regarding generalized amenability. I will target them. Arens products on the second dual of a Banach algebra are significant objects in Banach algebras. Arens regularity, topological centers and multipliers will be investigated for important Banach algebras. Counterparts in Banach algebras of crucial objects/notions in harmonic analysis will be investigated. Various types of approximate identities for ideals will also be studied. Amenability properties of a semigroup S, such as invariant means on WAP(S), LUC(S) and C(S), will be studied in the program. There are deep relations between amenability properties and fixed point properties for a semitopological semigroup. I will study these relations. Semigroups of non-expansive self mappings on a closed subset of a Banach space will be particularly concerned. Fixed point property of this type of mappings is extremely important in the field of nonlinear analysis.
由于M. Gelfand在1941年发表了关于规范环的先驱工作,Banach代数理论已成为功能分析的主要领域。该理论在分析和代数之间存在于其性质上,对现代数学产生了深远的影响。拟议的研究将重点介绍Banach代数的拓扑结构和代数结构,其第二个双重及其理想。我们还将研究半群的休息性和固定点特性。 BANACH代数研究的研究始于1970年代。在这一主题上取得的结果通常代表了Banach代数理论的发展。同种学研究了共同体和共体空间的差异。从传统上讲,串联和共生被视为线性空间,因此,同一个学组只是一个代数对象。但是,这些空间可能自然配备了各种拓扑。人们可以考虑Banach代数的“拓扑”共同体。这是我将为该程序探索的方向。最近引入的各种类型的Banach代数的普遍性舒适性可以解释为第一个共同体学组的“拓扑琐事”,相对于特定拓扑。关于广义的不合适性有许多开放性问题。我将针对它们。 Banach代数的第二个双重双重的Arens产品是Banach代数中的重要对象。 Arens的规律性,拓扑中心和乘数将用于重要的Banach代数。将研究谐波分析中关键对象/概念的Banach代数中的对应物。还将研究各种类型的理想身份。该半群的不变属性,例如WAP(S),LUC(S)和C(S)的不变式均值。 对于半题学半群的固定性特性与固定点特性之间存在着深厚的关系。我将研究这些关系。在Banach空间的封闭子集上的非强度自我映射的半群将特别关注。这种类型的映射的固定点特性在非线性分析领域非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yong其他文献
miR-135a-5p and miR-124-3p Inhibit Malignancy of Glioblastoma by Downregulation of Syndecan Binding Protein
- DOI:
10.1166/jbn.2018.2579 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:2.9
- 作者:
Lin, Jinzhi;Wen, Xia;Zhang, Yong - 通讯作者:
Zhang, Yong
Fluorescence-guided surgery improves outcome in an orthotopic osteosarcoma nude-mouse model.
- DOI:
10.1002/jor.22706 - 发表时间:
2014-12 - 期刊:
- 影响因子:2.8
- 作者:
Miwa, Shinji;Hiroshima, Yukihiko;Yano, Shuya;Zhang, Yong;Matsumoto, Yasunori;Uehara, Fuminari;Yamamoto, Mako;Kimura, Hiroaki;Hayashi, Katsuhiro;Bouvet, Michael;Tsuchiya, Hiroyuki;Hoffman, Robert M. - 通讯作者:
Hoffman, Robert M.
Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety.
- DOI:
10.3389/fpsyt.2023.1078779 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Xue, Kangkang;Chen, Jingli;Wei, Yarui;Chen, Yuan;Han, Shaoqiang;Wang, Caihong;Zhang, Yong;Song, Xueqin;Cheng, Jingliang - 通讯作者:
Cheng, Jingliang
Systematic evaluation of factors influencing ChIP-seq fidelity.
- DOI:
10.1038/nmeth.1985 - 发表时间:
2012-06 - 期刊:
- 影响因子:48
- 作者:
Chen, Yiwen;Negre, Nicolas;Li, Qunhua;Mieczkowska, Joanna O.;Slattery, Matthew;Liu, Tao;Zhang, Yong;Kim, Tae-Kyung;He, Housheng Hansen;Zieba, Jennifer;Ruan, Yijun;Bickel, Peter J.;Myers, Richard M.;Wold, Barbara J.;White, Kevin P.;Lieb, Jason D.;Liuas, X. Shirley - 通讯作者:
Liuas, X. Shirley
Ag-decorated Fe3O4@SiO2 core-shell nanospheres: Seed-mediated growth preparation and their antibacterial activity during the consecutive recycling
Ag修饰的Fe3O4@SiO2核壳纳米球:种子介导的生长制备及其在连续回收过程中的抗菌活性
- DOI:
10.1016/j.jallcom.2016.03.191 - 发表时间:
2016-08-15 - 期刊:
- 影响因子:6.2
- 作者:
Li, Miaomiao;Wu, Wenjie;Zhang, Yong - 通讯作者:
Zhang, Yong
Zhang, Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yong', 18)}}的其他基金
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
- 批准号:
RGPIN-2022-04137 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2017
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2016
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2014
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2012
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
用凸分析理论与零乘决定Banach代数探讨保持问题
- 批准号:12201224
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
用凸分析理论与零乘决定Banach代数探讨保持问题
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环中几类新型广义逆及其在神经网络和Banach代数中的应用
- 批准号:11901245
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
空间理论中与框架相关的逼近性质和扩张理论的研究
- 批准号:11671214
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
自反算子代数上的局部Lie映射和Lie弱顺从性
- 批准号:11601010
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cyclic and simplicial cohomology of Banach algebras
Banach 代数的循环和单纯上同调
- 批准号:
184058-2012 - 财政年份:2016
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2016
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Cyclic and simplicial cohomology of Banach algebras
Banach 代数的循环和单纯上同调
- 批准号:
184058-2012 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual