Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
基本信息
- 批准号:183654-2009
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lie theory is named after its founder, 19th century Norwegian mathematician Sophus Lie. This theory is used to describe continuous symmetries of mathematical and physical objects. Applying this theory, Einstein derived his special relativity theory from a single postulate about the symmetry structure of the space-time. In this example, the number of symmetries is infinite, but the dimension of the group of symmetries is still finite. In string theory, on the other hand, the group of symmetries is infinite-dimensional. This proposal is aimed at the advancement of the infinite-dimensional Lie theory with a view on possible applications to string theory.
李理论以其创始人、19 世纪挪威数学家索菲斯·李 (Sophus Lie) 的名字命名。该理论用于描述数学和物理对象的连续对称性。应用这一理论,爱因斯坦从关于时空对称结构的单一假设中得出了他的狭义相对论。在这个例子中,对称性的数量是无限的,但是对称性群的维数仍然是有限的。另一方面,在弦理论中,对称群是无限维的。该提案旨在推进无限维李理论,并着眼于弦理论的可能应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Billig, Yuly其他文献
Billig, Yuly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Billig, Yuly', 18)}}的其他基金
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
- 批准号:
RGPIN-2014-05851 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
- 批准号:
RGPIN-2014-05851 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
- 批准号:
RGPIN-2014-05851 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
- 批准号:
RGPIN-2014-05851 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
- 批准号:
RGPIN-2014-05851 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
183654-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
多级多维度手性自组装体的精准构筑及其可见光-不对称双功能催化研究
- 批准号:22372145
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于纳米孔多维度数据的恶性胶质瘤基因组结构变异异质性及调控网络研究
- 批准号:32300522
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多维度高次谐波谱中的多电子动力学研究
- 批准号:12304304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海马-前额叶在认知地图构建中的作用:基于不同维度与空间的对比研究
- 批准号:32371101
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
- 批准号:22375081
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant