PDE's related to Euclidean and Minkowski minimal surfaces, and Monge-Ampere functions

偏微分方程与欧几里得和闵可夫斯基最小曲面以及 Monge-Ampere 函数相关

基本信息

  • 批准号:
    261955-2008
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

This proposal addresses several distinct but related families of questions in the general area of
该提议涉及几个不同但相关的问题家庭

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerrard, Robert其他文献

Jerrard, Robert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerrard, Robert', 18)}}的其他基金

Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Science Literacy
科学素养
  • 批准号:
    566492-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    PromoScience Supplement for Science Literacy Week
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Science Odyssey
科学奥德赛
  • 批准号:
    561246-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    PromoScience Supplement for Science Odyssey
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
  • 批准号:
    261955-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
  • 批准号:
    261955-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
  • 批准号:
    261955-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

与弱分异花岗岩有关的钨矿床中W的关键富集机制:以鄂东南龙角山-付家山矿床为例
  • 批准号:
    42302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
YTHDF1通过m6A修饰调控耳蜗毛细胞炎症反应在老年性聋中的作用机制研究
  • 批准号:
    82371140
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
有关特殊交换群上Davenport常数与广义EGZ常数的研究
  • 批准号:
    12301425
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SOD1介导星形胶质细胞活化调控hNSC移植细胞存活的机制研究
  • 批准号:
    82372136
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
有关趋化Navier-Stokes方程的定性研究
  • 批准号:
    12371231
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

Influences of Environmental Geometry and Aging on Cognitive Mapping Mechanisms
环境几何和衰老对认知映射机制的影响
  • 批准号:
    10441684
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Higher Order Convolutional Neural Network for Classification of Lewy-body Diseases and Alzheimers Disease
用于路易体病和阿尔茨海默病分类的高阶卷积神经网络
  • 批准号:
    10363781
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Influences of Environmental Geometry and Aging on Cognitive Mapping Mechanisms
环境几何和衰老对认知映射机制的影响
  • 批准号:
    10617798
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Problems in Euclidean harmonic analysis related to the geometry of curves and surfaces
与曲线和曲面几何相关的欧几里得调和分析问题
  • 批准号:
    230032422
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grants
PDE's related to Euclidean and Minkowski minimal surfaces, and Monge-Ampere functions
偏微分方程与欧几里得和闵可夫斯基最小曲面以及 Monge-Ampere 函数相关
  • 批准号:
    261955-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了