Spatiotemporal Modulation of Osteogenesis in a 3-D Stromal/Stem Cell Model
3-D 基质/干细胞模型中成骨的时空调节
基本信息
- 批准号:8979685
- 负责人:
- 金额:$ 35.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2016-08-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdipose tissueAdultAffectAlamarBlueAlkaline PhosphataseAngiogenic FactorAnimalsBlood VesselsBone RegenerationCD-1 Nude MouseCalciumCalvariaCell SurvivalCell TherapyCell modelCellsComplexCuesCulture MediaDNADefectDevelopmentEnvironmentEvaluationFractureGene DeliveryGene ExpressionGoalsHealthHumanHydrogelsIn VitroLeadLifeLightLiteratureLocationMechanicsMesenchymal Stem CellsMetabolicMethodsMethylcelluloseMicroRNAsModelingMusMusculoskeletalNude MiceOperative Surgical ProceduresOsteocalcinOsteogenesisPECAM1 genePolymersPositioning AttributeProcessProductionQualifyingResearchRoleSignal TransductionSiteSpatial DistributionStaining methodStainsStem cellsStructureSystemTechniquesTestingThickTimeTissue EngineeringTissue ModelTissuesUntranslated RNAVariantVascular Endothelial Growth FactorsVascularizationX-Ray Computed Tomographyadult stem cellangiogenesisbaseboneclinically relevantcomparativegene delivery systemimprovedin vivoinnovationlaser capture microdissectionmineralizationnanoplasmonicosteogenicosteopontinphotoactivationplasmonicsrepairedscaffoldspatiotemporalstem cell differentiationvon Willebrand Factor
项目摘要
DESCRIPTION (provided by applicant): A substantial body of literature supports linkages between osteogenic and angiogenic signals both in vitro and in vivo, but little is known about how their spatial and temporal coordination impacts the differentiation of adult stromal/stem cells (ASC) and bone regeneration. This study explores the coordination of angiogenic and osteogenic signals utilizing two techniques, recently described by our labs; i) the production ASCs sheets that can be stacked to generate quasi three- dimensional (3-D) structures and ii) the photo-controlled differentiation of ASCs through tightly regulated miRNA mimic delivery. The combination of these techniques will allow the induction of spatiotemporal gradients of angiogenic and osteogenic factors in a 3-D model to study how the timing and magnitude of differentiation cues impact ASC cell fate in the complex fracture site environment. Thus, our overall goal for this project is the development of an in vitro, quasi 3-D model of ASC osteogenesis to establish the effect of spatiotemporally modulated osteogenic and angiogenic cues and correlation of these results in a nude mouse calvarial defect model. As noted above we have developed a method of ASC cell sheet production utilizing a thermally reversible methylcellulose hydrogel polymer and automated cell manipulation system enabling the development of quasi 3-D structures to serve as model tissues. We have also demonstrated a light activated Plasmonic Gene Delivery system (PGDs), which serves as a convenient inducible gene delivery vehicle. When combined with miRNA mimics, miR-148b and miR-132, PGDs have been demonstrated to induce de novo osteogenic and angiogenic differentiation in human adipose derived ASCs, respectively. Combining both these methods will allow the induction of spatiotemporal differentiation gradients within the quasi 3-D ASC sheets and improve our understanding of the interplay of osteogenic and angiogenic factors in ASC based bone repair. The hypothesis will be tested in the following three Aims: Aim 1 will assess the impact on cell sheet stacking on ASC viability and differentiation. ASC cell sheets will be stacked into 1, 2, 5, 10 and 20 layers and cultured for up to 28 days to determine the impact on ASC viability, proliferation and differentiation potential. Aim 2 will assess the impact of temporally and spatialy varying the light activation of PGDs with osteogenic and angiogenic miRNA mimics on the osteogenesis and angiogenesis of ASCs within the quasi 3-D stem cells sheets. In aim 3 we will correlate in vitro results with in vivo in a 12-week nude mouse calvarial defect model. Optimal 3-D stack sizes and spatiotemporal induction conditions determined in Aim 1&2 will be tested in the repair of a calvarial defect in a CD-1 nude mouse. Animals will be euthanized at 1,6 and 12 weeks post-surgery and undergo histological, x-ray and �CT evaluation for bone formation and vascularization of the defect site. The successful conduct of the project will provide a greater understanding of how spatiotemporally coordinated expression of osteo- and angiogenic factors impact ASC differentiation into bone and additionally, this research will lead to improved stromal/stem cell based therapies for critical sized bone defect repair.
描述(由申请人提供):大量文献支持体外和体内成骨信号和血管生成信号之间的联系,但对于它们的空间和时间协调如何影响成体基质/干细胞(ASC)和成体基质/干细胞(ASC)的分化知之甚少。这项研究利用我们实验室最近描述的两种技术探索血管生成和成骨信号的协调;i) 可以堆叠以生成准三维 (3-D) 的生产 ASC 片。结构和 ii) 通过严格调控 miRNA 模拟传递来控制 ASC 的分化,这些技术的结合将允许在 3D 模型中诱导血管生成和成骨因子的时空梯度,以研究分化的时间和程度。因此,我们该项目的总体目标是开发 ASC 成骨的体外准 3D 模型,以建立时空调节的效果。裸鼠颅骨缺损模型中的成骨和血管生成线索以及这些结果的相关性如上所述,我们开发了一种利用热可逆甲基纤维素水凝胶聚合物和自动化细胞操作系统生产ASC细胞片的方法,从而能够开发准3-D。我们还展示了光激活等离子体基因传递系统(PGD),当与 miRNA 模拟物结合时,它可以作为一种方便的诱导基因传递载体。 miR-148b 和 miR-132、PGD 已被证明可分别诱导人脂肪来源的 ASC 中的从头成骨和血管生成分化,结合这两种方法将允许在准 3-D ASC 表内诱导时空分化梯度并改善。我们对基于 ASC 的骨修复中成骨和血管生成因子相互作用的理解 该假设将在以下三个目标中得到检验: 目标 1 将评估细胞片堆叠对 ASC 活力和分化的影响 将 ASC 细胞片堆叠成 1、2、5、10 和 20 层并培养长达 28 天,以确定对 ASC 活力、增殖和分化潜力的影响。将评估使用成骨和血管生成 miRNA 模拟物在时间和空间上改变 PGD 的光激活对准 3-D 干细胞内 ASC 的成骨和血管生成的影响在目标 3 中,我们将在 12 周的裸鼠颅骨缺损模型中将体外结果与体内相关联。目标 1 和 2 中确定的最佳 3-D 堆栈大小和时空诱导条件将在颅骨缺损的修复中进行测试。 CD-1裸鼠将在手术后1.6周和12周处死,并接受组织学、X射线和CT评估骨形成和血管化。该项目的成功进行将有助于更好地了解骨和血管生成因子的时空协调表达如何影响 ASC 分化为骨,此外,这项研究还将改进基于基质/干细胞的关键尺寸疗法。骨缺损修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel J. Hayes其他文献
100 Key Questions to Guide Hydropeaking Research and Policy
指导水峰研究和政策的 100 个关键问题
- DOI:
10.2139/ssrn.4426087 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:0
- 作者:
Daniel J. Hayes;M. Bruno;M. Alp;I. Boavida;R. Batalla;M. Bejarano;M. Noack;D. Vanzo;R. Casas‐Mulet;D. Vericat;M. Carolli;D. Tonolla;J. Halleraker;Marie;G. Chiogna;G. Zolezzi;Terese E. Venus - 通讯作者:
Terese E. Venus
Separation of rat pituitary secretory granules by continuous flow electrophoresis
连续流电泳分离大鼠垂体分泌颗粒
- DOI:
10.1002/elps.1150111118 - 发表时间:
1990 - 期刊:
- 影响因子:2.9
- 作者:
Daniel J. Hayes;Carrie Exton;T. Salada;Kathy Shellenberger;Jenny Waddle;W. Hymer - 通讯作者:
W. Hymer
Traitement des occlusions proximales de l’artère fémorale superficielle par endartériectomie à ciel ouvert et angioplastie fémoro-poplitée endovasculaire avec stent
股动脉近端闭塞术、股动脉内切除术和股腘血管内血管成形术(含支架)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Daniel J. Hayes;M. J. Dougherty;K. D. Calligaro - 通讯作者:
K. D. Calligaro
Management of flush superficial femoral artery occlusions with combined open femoral endarterectomy and endovascular femoral-popliteal angioplasty and stent-grafting.
联合开放式股动脉内膜切除术和血管内股腘血管成形术和支架移植术治疗股浅动脉闭塞。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
Daniel J. Hayes;M. Dougherty;K. Calligaro - 通讯作者:
K. Calligaro
Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
不均匀的季节性变暖调节了北部地区的植被绿化和大气二氧化碳放大
- DOI:
10.1088/1748-9326/aae9ad - 发表时间:
2018-11-27 - 期刊:
- 影响因子:6.7
- 作者:
Zhao Li;J. Xia;A. Ahlström;A. Rinke;C. Koven;Daniel J. Hayes;D. Ji;Geli Zhang;G. Krinner;Guangsheng Chen;Wanying Cheng;Jinwei Dong;Junyi Liang;John C. Moore;Lifen Jiang;Liming Yan;P. Ciais;S. Peng;Ying‐ping Wang;Xiangming Xiao;Z. Shi;A. McGuire;Yiqi Luo - 通讯作者:
Yiqi Luo
Daniel J. Hayes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel J. Hayes', 18)}}的其他基金
Ultrasound responsive hydrogels for stimulated combinatorial drug delivery
用于刺激组合药物递送的超声响应水凝胶
- 批准号:
10742110 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Biomedical Engineering Design: Integrating Simulation, Clinical Immersion, and Regulatory Training
生物医学工程设计:集成模拟、临床沉浸和监管培训
- 批准号:
10204301 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
Biomedical Engineering Design: Integrating Simulation, Clinical Immersion, and Regulatory Training
生物医学工程设计:集成模拟、临床沉浸和监管培训
- 批准号:
10493117 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
Spatio-temporal Modulation of Osteogenesis in a 3-D Stromal Stem Cell Model
3-D 基质干细胞模型中成骨的时空调节
- 批准号:
9393199 - 财政年份:2017
- 资助金额:
$ 35.75万 - 项目类别:
相似国自然基金
基于“脂肪-肝脏对话”探讨脂肪组织代谢重编程相关活性代谢因子AMRM2调控RNF8/RXRα/PPARα轴在肝脏脂质代谢稳态维持中的作用与机制
- 批准号:82300971
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同脂肪组织及其驻留巨噬细胞调控小鼠禁食稳态的系统研究
- 批准号:32301235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
棕色脂肪组织源外泌体circ-JARID2调控线粒体功能在延缓卵巢衰老中的作用及机制研究
- 批准号:82301848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
The Jackson Laboratory Senescence Tissue Mapping Center (JAX-Sen TMC) - Biological Analysis Core
杰克逊实验室衰老组织绘图中心 (JAX-Sen TMC) - 生物分析核心
- 批准号:
10683389 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别: