Molecular control of brain size
大脑大小的分子控制
基本信息
- 批准号:9002106
- 负责人:
- 金额:$ 20.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-22 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAnimal ModelBehaviorBrainCentriolesCentrosomeCerebral PalsyCerebral cortexCerebrumCognitiveCortical MalformationDNA Sequence AlterationDataDaughterDefectDevelopmentEpilepsyEvolutionFerretsGenesGeneticGenetic EngineeringGenetic studyGreen Fluorescent ProteinsHealthHumanHuman GeneticsImageImmunoelectron MicroscopyImmunohistochemistryInfectionIntellectual functioning disabilityInvestigationKnock-outKnockout MiceKnowledgeLanguage DelaysLocationMaintenanceMeasuresMental HealthMicrocephalyModelingMolecularMothersMusMutateMutationNeurodevelopmental DisorderNeurogliaNeurologicNeuronsPatientsPhenotypePopulationPrimatesProteinsRadialReportingResolutionRoleSliceSymptomsSystemThickTimeVariantWD RepeatWorkautism spectrum disorderbrain sizebrain volumeflygene productgenome editingin vivoinnovationinsightmouse modelnerve stem cellnovelprematureprogenitortooltranscription activator-like effector nucleasestransmission process
项目摘要
DESCRIPTION (provided by applicant): Microcephaly ("abnormally small brain") is a neurodevelopmental disorder that causes neurological symptoms, such as intellectual disability, language delay, and epilepsy. A number of causative genes have been reported, the majority of which encode centrosomal proteins. Exactly how mutations in centrosomal proteins cause microcephaly is not well understood. Previous studies using fly and mouse models suggest that mutations in centrosomal proteins may disrupt proliferation of neural progenitor cells (NPCs) or induce premature differentiation into neurons at the expense of NPCs. However, currently available animal models of microcephaly have pretty mild phenotypes, making it hard to address which molecular and cellular mechanisms are critical to severe microcephaly in humans. This project seeks to develop and establish new animal models for microcephaly with robust phenotypes. We have two hypotheses: (1) because many microcephaly gene products colocalize in the centrosome, some of them may interact biochemically and genetically. For example, ASPM (abnormal spindle-like, microcephaly-associated) and WDR62 (WD repeat domain 62), the two most common causes for human microcephaly when mutated, interact with each other. Thus, heterozygous deletion of one microcephaly gene, which has no phenotype at all by itself, may enhance the mild phenotype in homozygous knockout mice of another microcephaly gene; (2) Unlike mice, ferrets have an enlarged brain, which contains outer radial glial cells, a type of NPCs that is highly abundant in the human cortex. Thus, knockout ferrets of a microcephaly gene may show robust phenotypes compared to knockout mice of the same gene. In Aim 1, we will examine Aspm-/-; Wdr62+/- mice that have a significantly smaller brain than any control mice (Aspm+/+; Wdr62+/- and Aspm-/-; Wdr62+/+ mice), which have negligible phenotypes. We will characterize interaction between the two proteins as well as asymmetric inheritance of mother versus daughter centrosomes in the developing cortex of Aspm-/-; Wdr62+/- mice. In Aim 2, we will establish and characterize Aspm-knockout ferrets that we have recently generated using TALEN, a new genome-editing tool. Preliminary data show that they have severe microcephaly. Using immunohistochemistry and adenoviral green fluorescent protein infection followed by time-lapse imaging, we will examine abundance and behaviors of diverse NPCs in Aspm-knockout and wile-type ferrets. The proposed work will provide exciting new animal models for microcephaly and cortical malformation in general, creating an innovative experimental system in the field of cerebral cortical development and evolution. With ever-increasing list of genes from human genetic studies, our approach will demonstrate how to study functional meanings of a gene when knockout mice of the gene do not show robust phenotypes. In addition, it should resolve the current debate over roles of outer radial glial cell during cerebral cortical development, and has the potential to identify novel mechanisms of normal cortical development.
描述(由申请人提供):小头畸形(“异常小的大脑”)是一种神经发育障碍,会导致神经系统症状,例如智力障碍、语言发育迟缓和癫痫,已报道了许多致病基因,其中大多数编码中心体。中心体蛋白突变如何导致小头畸形尚不清楚,之前使用果蝇和小鼠模型进行的研究表明,中心体蛋白突变可能会破坏神经祖细胞的增殖。然而,目前可用的小头畸形动物模型具有相当温和的表型,因此很难确定哪些分子和细胞机制对人类严重小头畸形至关重要。建立具有稳健表型的新小头畸形动物模型:(1)由于许多小头畸形基因产物共定位于中心体,其中一些可能会发生生化和遗传相互作用。 ASPM(异常纺锤体样,小头畸形相关)和 WDR62(WD 重复结构域 62)是人类小头畸形的两个最常见原因,它们在突变时会相互作用,因此,一个小头畸形基因的杂合性缺失,该基因在 1 处没有表型。单独而言,可能会增强另一种小头畸形基因的纯合敲除小鼠的轻度表型;(2)与小鼠不同,雪貂的大脑增大,其中包含外部放射状胶质细胞是人类皮质中高度丰富的一种 NPC,因此,与相同基因的敲除小鼠相比,小头畸形基因敲除的雪貂可能表现出更强的表型。 Wdr62+/- 小鼠的大脑明显小于任何对照小鼠(Aspm+/+;Wdr62+/- 和 Aspm-/-;Wdr62+/+我们将描述两种蛋白质之间的相互作用以及 Aspm-/- 小鼠发育中皮质中母体与子体中心体的不对称遗传;在目标 2 中,我们将建立并描述我们最近拥有的 Aspm 敲除雪貂。使用 TALEN(一种新的基因组编辑工具)生成的初步数据显示,他们患有严重的小头畸形。和腺病毒绿色荧光蛋白感染,然后进行延时成像,我们将检查 Aspm 敲除雪貂和 wile 型雪貂中不同 NPC 的丰度和行为,这项工作将为小头畸形和皮质畸形提供令人兴奋的新动物模型,从而创造出新的动物模型。大脑皮层发育和进化领域的创新实验系统随着人类遗传学研究中的基因列表不断增加,我们的方法将展示如何在敲除小鼠的情况下研究基因的功能意义。此外,它应该解决目前关于外放射状胶质细胞在大脑皮层发育过程中的作用的争论,并有可能确定正常皮层发育的新机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BYOUNG-IL BAE其他文献
BYOUNG-IL BAE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BYOUNG-IL BAE', 18)}}的其他基金
Mechanisms by Which Macrocephaly Underlies Autism Spectrum Disorder
自闭症谱系障碍中大头畸形的机制
- 批准号:
10593343 - 财政年份:2023
- 资助金额:
$ 20.9万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 20.9万 - 项目类别:
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
- 批准号:
10733153 - 财政年份:2023
- 资助金额:
$ 20.9万 - 项目类别:
A community resource for germline and somatic genetic disease modeling in zebrafish
斑马鱼种系和体细胞遗传疾病模型的社区资源
- 批准号:
10723158 - 财政年份:2023
- 资助金额:
$ 20.9万 - 项目类别: