Actin filament elasticity and actin-binding protein function
肌动蛋白丝弹性和肌动蛋白结合蛋白功能
基本信息
- 批准号:9029502
- 负责人:
- 金额:$ 42.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinActinsAwardBindingBinding ProteinsBinding SitesBiochemicalBiological ProcessBiologyBiomimeticsCationsCell PolarityCellsChemistryComplexComputer SimulationContractile ProteinsCryoelectron MicroscopyCytokinesisCytoskeletonDissociationElasticityEndocytosisEukaryotic CellFilamentGrowthIn VitroIonsKnowledgeLaboratoriesLinkMagnetismMechanicsMedicalMethodsMicrofilamentsMolecularMolecular ConformationMolecular ModelsMotorMutateMyosin ATPaseOrganismPhosphorylationPhysicsPhysiologyPlasticsPlayPost-Translational Protein ProcessingProbabilityPropertyProteinsPublishingRecruitment ActivityRegulationResearchResearch ActivityResolutionRoleShapesStretchingStructureSystemTestingTranslatingWorkbiophysical analysisbiophysical techniquescell motilitychemical propertycofilindensityexperienceexperimental analysisgenetic regulatory proteinin vivoinsightmathematical modelmodels and simulationmolecular modelingnovelpathogenic bacteriaphysical propertypolymerizationpredictive modelingprotein functionpublic health relevancesensor
项目摘要
DESCRIPTION (provided by applicant): Polymerization of the protein actin into helical filaments powers the directed motility of eukaryotic cells and some pathogenic bacteria. Actin assembly also plays critical roles in endocytosis, cytokinesis, and establishment of cell polarity.
The essential regulatory protein, cofilin, is one of four actin-binding proteins that precisely choreograph actin assembly and organization in living systems. It acts by severing filaments, which increases the concentration of filament ends available for subunit addition and dissociation, thereby accelerating overall actin network dynamics and reorganization. It is therefore of general medical importance to understand how cofilin fragments actin filaments. Although the effects of cofilin binding to actin filaments have been extensively studied, the molecular mechanism of how cofilin severs filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. Elucidating the cofilin severing mechanism demands a multi-disciplinary approach integrating biology, chemistry, physics and mathematical modeling. Proposed research efforts focus on identifying how specific cation binding, post-translational modification, competition with other regulatory proteins, and filament shape deformations modulate actin filament structure and severing by vertebrate cofilin. Five general hypotheses will be tested. The first is that vertebrate cofilin severs filaments by dissociating a specific filamen-associated cation that controls filament structure and mechanical properties. The second is that competitive displacement of cofilin by other filament binding proteins can promote cofilactin filament severing by introducing boundaries of bare and cofilin-decorated segments. The third is that phosphorylation enhances cooperative cofilin binding and inhibits severing, not by lowering cofilin occupancy along filaments, but by reducing the density of boundaries where severing can occur. The fourth is that contractile protein- driven deformations in filament shape enhance severing by cofilin. The fifth is that actin filaments can act as tension sensors that recruit or exclude cofilin depending on the magnitude and mode of filament shape deformation. We will integrate biochemical and biophysical approaches, including experimental manipulation of single filaments, with mathematical modeling and simulations to develop predictive molecular models of actin filament elasticity and fragmentation, and directly test hypotheses formulated from biochemical and biophysical analysis of cofilin-actin interactions completed during the prior award period. The proposed research activities will advance knowledge of actin filament physiology by providing multi-scale relationships between filament mechanics, structure, and the biological function (e.g. severing activity) of essential regulatory proteins. New experimental
and methods of analysis readily applicable to other filament binding proteins will be developed. Novel insight regarding the relationship between actin filament elasticity, conformation and regulatory protein occupancy will emerge from the work.
描述(由申请人提供):肌动蛋白聚合成螺旋丝为真核细胞和一些病原细菌的定向运动提供动力,肌动蛋白组装也在胞吞作用、胞质分裂和细胞极性的建立中发挥关键作用。
重要的调节蛋白肌动蛋白丝切蛋白是四种肌动蛋白结合蛋白之一,可在生命系统中精确地编排肌动蛋白组装和组织,它通过切断细丝发挥作用,从而增加可用于亚基添加和解离的细丝末端的浓度,从而加速整体肌动蛋白。因此,了解肌丝蛋白丝切蛋白如何断裂肌动蛋白丝具有广泛的医学意义,尽管肌丝蛋白丝切蛋白与肌动蛋白丝结合的作用已被广泛研究,但其分子机制。丝切蛋白如何切断其硬度可与商业实验室塑料相媲美,仍然是细胞肌动蛋白细胞骨架重组的一个核心且未解的谜团,阐明丝切蛋白切断机制需要结合生物学、化学、物理和数学建模的多学科方法。重点研究特定阳离子结合、翻译后修饰、与其他调节蛋白的竞争以及丝形状变形如何调节肌动蛋白丝结构和切断将测试脊椎动物丝切蛋白。第一个假设是脊椎动物丝切蛋白通过解离控制丝结构和机械特性的特定丝切蛋白来切断丝丝蛋白,第二个假设是其他丝丝结合蛋白竞争性取代丝切蛋白。通过引入裸露片段和肌动蛋白丝切蛋白修饰片段的边界来切断细丝;第三个是磷酸化增强协同肌动蛋白丝切蛋白结合并抑制。切断,不是通过降低肌丝蛋白丝切蛋白沿丝的占有率,而是通过降低可能发生切断的边界的密度。第四是丝状蛋白驱动的收缩变形增强丝丝蛋白丝切蛋白的切断作用。第五是肌动蛋白丝可以充当张力传感器。根据丝形状变形的程度和模式来招募或排除丝切蛋白我们将整合生物化学和生物物理方法,包括单丝的实验操作,通过数学建模和模拟来开发肌动蛋白丝弹性和断裂的预测分子模型,并直接测试根据先前获奖期间完成的丝切蛋白-肌动蛋白相互作用的生化和生物物理分析得出的假设,拟议的研究活动将增进对肌动蛋白丝生理学的了解。通过提供必需调节蛋白的丝力学、结构和生物功能(例如切断活性)之间的多尺度关系。
这项工作将开发出适用于其他丝结合蛋白的新见解,涉及肌动蛋白丝弹性、构象和调节蛋白占据之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ENRIQUE M DE LA CRUZ其他文献
ENRIQUE M DE LA CRUZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ENRIQUE M DE LA CRUZ', 18)}}的其他基金
Actin filament mechanics and branched network turnover
肌动蛋白丝力学和分支网络周转
- 批准号:
10561897 - 财政年份:2020
- 资助金额:
$ 42.43万 - 项目类别:
Actin filament mechanics and branched network turnover
肌动蛋白丝力学和分支网络周转
- 批准号:
10565886 - 财政年份:2020
- 资助金额:
$ 42.43万 - 项目类别:
Actin filament mechanics and branched network turnover
肌动蛋白丝力学和分支网络周转
- 批准号:
10386187 - 财政年份:2020
- 资助金额:
$ 42.43万 - 项目类别:
Actin filament elasticity and actin-binding protein function
肌动蛋白丝弹性和肌动蛋白结合蛋白功能
- 批准号:
8470662 - 财政年份:2011
- 资助金额:
$ 42.43万 - 项目类别:
Actin filament elasticity and actin-binding protein function
肌动蛋白丝弹性和肌动蛋白结合蛋白功能
- 批准号:
8333339 - 财政年份:2011
- 资助金额:
$ 42.43万 - 项目类别:
Actin filament elasticity and actin-binding protein function
肌动蛋白丝弹性和肌动蛋白结合蛋白功能
- 批准号:
8083867 - 财政年份:2011
- 资助金额:
$ 42.43万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Determining the effect of RNA binding protein phosphorylation on mRNA fate
确定 RNA 结合蛋白磷酸化对 mRNA 命运的影响
- 批准号:
10680495 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Determining the effect of RNA binding protein phosphorylation on mRNA fate
确定 RNA 结合蛋白磷酸化对 mRNA 命运的影响
- 批准号:
10477945 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Determining the effect of RNA binding protein phosphorylation on mRNA fate
确定 RNA 结合蛋白磷酸化对 mRNA 命运的影响
- 批准号:
10680495 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Structure and Mechanism of G-proteins and cell adhesion proteins in regulation of cell growth and motility
G蛋白和细胞粘附蛋白调节细胞生长和运动的结构和机制
- 批准号:
10798511 - 财政年份:2020
- 资助金额:
$ 42.43万 - 项目类别: