Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
基本信息
- 批准号:8954687
- 负责人:
- 金额:$ 219.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AwardBiochemicalBiocompatibleBiologicalCarbonChemicalsCoinDevice or Instrument DevelopmentDevicesDiseaseElasticityElectronicsEngineeringGoalsHealthHealth SciencesHealthcareIntracranial PressureMeasuresMechanicsMethodologyMicrofabricationModalityModelingMolecularMonitorPhasePhysiologicalPolymer ChemistryPolymersPropertyProsthesisPrunella vulgarisRattusResearchResearch DesignRetinaSemiconductorsSignal TransductionSkinSynthesis ChemistryTelemetryTissuesToxic effectTransducersTraumatic Brain InjuryUnited States National Institutes of HealthWireless Technologybasebiomaterial compatibilityelastomericexperiencehuman tissueimplantable deviceimplanted sensorinstrumentnanofabricationpolymerizationpressurepreventpublic health relevancerepairedsensor
项目摘要
DESCRIPTION (provided by applicant): This project aims to create a new class of semiconducting polymers for applications in wearable and implantable healthcare that-in contrast to all other research on "electronic skin"-will actually have properties inspired by biological tissue: extreme elasticity, biodegradability, and the ability to self-heal. The goal of organic bioelectronics is to detect and treat disease by using signal transducers based on organic conductors and semiconductors in wearable and implantable devices. Except for the carbon framework of these otherwise versatile materials, they have essentially no properties in common with biological tissue: electronic polymers are typically stiff and brittle, and do not degrade under physiological conditions. Seamless integration with soft, biodegradable, and self-healing tissue has thus not yet been realized. In Phase I of this project, we will develop a modular synthetic methodology based on segmented polymerization of semiconducting segments and biodegradable elastomeric segments. Phase II will characterize the properties of this new class of materials, which will be the first polymeric semiconductors to have the mechanical properties of human tissue, the first known semiconductors capable of self-repair, and the first organic semiconductors that can degrade under physiological conditions into biocompatible byproducts, which will be established in a rat model. Phase III will use the synthetic materials as transducers of chemical, biomolecular, mechanical, and electrical signals in several modalities as proof-of-concept devices, including skin-like pressure sensors for instrumented prostheses, biochemical sensors for wearable health monitors, and photodetectors for artificial retinas. Phase III will culminate in the demonstration of an implantable epidural pressure sensor for continuous monitoring of intracranial pressure (ICP). The long-term goal of this research is to endow these devices with the capability of wireless power and telemetry. The strength of the proposal is its vertically integrated strategy that combines molecular engineering and synthetic chemistry with determination of biodegradability and biocompatibility, the fabrication of devices, and their use in detecting physiological signals relevant to a range of diseases. The proposed research will build on my documented experience executing and directing projects in an especially broad range of topics: total synthesis of medicinally active compounds, micro- and nanofabrication of electronic devices, and development of stretchable materials and skin-like sensors for applications in implantable health monitoring. I coined the term "Molecularly Stretchable Electronics" to describe the research of my group, which is becoming internationally recognized as a leader in the mechanical properties of functional electronic polymers. The NIH Director's New Innovator Award would jumpstart my group's progress toward the long-term goal of my research: designing soft electronic materials specifically for applications in the health sciences.
描述(由申请人提供):该项目旨在创建一种新型半导体聚合物,用于可穿戴和植入式医疗保健应用,与“电子皮肤”的所有其他研究相比,它实际上具有受生物组织启发的特性:极高的弹性、生物降解性和自愈能力,有机生物电子学的目标是通过在可穿戴和植入设备中使用基于有机导体和半导体的信号传感器来检测和治疗疾病。由于这些多功能材料的碳框架,它们基本上与生物组织没有共同的特性:电子聚合物通常是硬而脆的,并且在生理条件下不会降解,因此与柔软的、可生物降解的和自愈的组织无缝集成。在该项目的第一阶段,我们将开发一种基于半导体片段和可生物降解弹性体片段的分段聚合的模块化合成方法,第二阶段将表征这种新型材料的特性。是第一个具有人体组织机械性能的聚合物半导体,第一个已知的能够自我修复的半导体,以及第一个可以在生理条件下降解为生物相容性副产物的有机半导体,这些半导体将在第三阶段的大鼠模型中建立。将使用合成材料作为化学、生物分子、机械和电信号的传感器,以多种方式作为概念验证设备,包括用于仪表假肢的类皮肤压力传感器、用于可穿戴健康监测器的生化传感器,第三阶段将最终展示用于持续监测颅内压 (ICP) 的植入式硬膜外压力传感器。这项研究的长期目标是赋予这些设备无线供电和遥测功能。该提案的优势在于其垂直整合战略,将分子工程和合成化学与生物降解性和生物相容性的确定、设备的制造及其在检测与一系列疾病相关的生理信号中的用途结合起来。拟议的研究将建立在我在特别广泛的主题中执行和指导项目的记录经验的基础上:药物活性化合物的全合成、电子设备的微米和纳米制造以及用于可植入健康应用的可拉伸材料和类皮肤传感器的开发我创造了“分子可拉伸电子学”这个术语来描述我的团队的研究,该团队正在成为国际公认的功能电子聚合物机械性能领域的领导者,美国国立卫生研究院院长的新创新者奖将迅速启动。我的团队在实现研究的长期目标方面取得的进展:设计专门用于健康科学应用的软电子材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darren J Lipomi其他文献
Darren J Lipomi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darren J Lipomi', 18)}}的其他基金
Platform for high-throughput biomechanical measurements using metallic islands on boron nitride nanosheets
使用氮化硼纳米片上的金属岛进行高通量生物力学测量的平台
- 批准号:
10158533 - 财政年份:2020
- 资助金额:
$ 219.33万 - 项目类别:
Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
- 批准号:
9980002 - 财政年份:2015
- 资助金额:
$ 219.33万 - 项目类别:
相似国自然基金
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多源生化数据的药物作用预测并行算法研究
- 批准号:62362004
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
冻融循环介导葡萄糖苷酶与热解碳界面分子机制和生化活性研究
- 批准号:42307391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型细菌色氨酸羟化酶家族的酶学表征、生化机理与应用研究
- 批准号:32370051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原位电离在线衍生化和串联质谱高效鉴定糖类同分异构体的分析策略研发
- 批准号:22374079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703808 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:
10644759 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703808 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Engineered Hydrogel Elucidates the Contribution of ECM Stiffness to Barrett's Esophagus Pathogenesis
工程水凝胶阐明了 ECM 硬度对巴雷特食管发病机制的影响
- 批准号:
10664561 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Investigating sex differences in persistent valvular myofibroblast activation using hydrogel culture substrates
使用水凝胶培养基质研究持续瓣膜肌成纤维细胞活化的性别差异
- 批准号:
10889407 - 财政年份:2021
- 资助金额:
$ 219.33万 - 项目类别: