Chromatin Regulation of Heart Valve Development
心脏瓣膜发育的染色质调控
基本信息
- 批准号:8632219
- 负责人:
- 金额:$ 36.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-15 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesBicuspidBindingBiochemicalBiological MarkersCell Culture TechniquesCellsChromatinChromatin Remodeling FactorComplexDefectDevelopmentDevelopmental ProcessDiagnosticDiseaseDisease ProgressionEmbryoEpigenetic ProcessEventFutureGene Expression ProfileGene Expression RegulationGene TargetingGeneticGenetic ModelsGenomeGoalsGrowthHeartHeart ValvesHuman GeneticsLightMesenchymalMesenchymeModelingMolecularMorphogenesisMusOutcomeOutcomes ResearchPathway interactionsPatternPhenotypePopulationProcessRegenerative MedicineRegulationRegulator GenesResearchRoleSignal PathwaySignal TransductionTechnologyTestingTissuesTranscriptTranscriptional RegulationTubeWorkaortic valve disorderbasebicuspid aortic valvechromatin remodelingdesigndevelopmental geneticsempoweredhuman diseaseimprovedinterstitialloss of functionmouse modelneglectnovelnovel diagnosticspreclinical studypreventprogramspublic health relevancerepairedsemilunar valvetherapeutic targettranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY:
Semilunar valve (SLV) diseases, including bicuspid aortic valves (BAV), are remarkably common and yet their
genetic and developmental origins are poorly understood. Likewise, it remains unclear how disrupted
embryonic valve development progresses into overt valve disease. Our long-term goal is to understand how
gene regulation drives sequential developmental processes that ultimately produce complex, patterned valves
and how these processes go awry in SLV disease. These gene regulatory events require transcription factors
to interface with a chromatinized genome, suggesting that chromatin regulators are key components of SLV
developmental networks. One important event is an endocardial-to-mesenchymal transformation (EMT) that
occurs early in valve development to populate endocardial cushions (ECs), including the proximal outflow tract
(pOFT) cushions that contribute tissue to SLVs. Our objectives are to 1) understand how chromatin remodeling
integrates with cell signaling during EMT, and 2) determine mechanisms by which disruptions of valve
development progress into diseased SLVs. Our central hypothesis is that endocardial Brg1-associated factor
(BAF) chromatin remodeling complexes interact with Wnt signaling effectors to promote pOFT EMT. As a
result, when endocardial Brg1 is deleted a subtype of OFT mesenchyme is depleted. Without these cells, cusp
overgrowth and fusion results in thickened and malpatterned SLVs, including BAV. The rationale for our efforts
is that defining chromatin remodeling roles during EMT will shed light on how SLV disease originates. Further,
our mouse models of SLV disease will enable an understanding of the cellular and molecular progression of
valve disease. Our specific aims are: 1) Determine the molecular networks that the BAF complex interfaces
with to direct EMT and 2) Determine mechanisms of SLV disease progression in mice lacking endocardial-
lineage Brg1. In pursuit of the first Aim, we will compare cellular and molecular pOFT defects seen in
unpublished genetic models disrupting Brg1 and Wnt signaling. We will apply a transformative new TU-tagging
technology to define dynamic, endocardial transcriptomes dependent on each pathway. Using new cell culture
approaches, we will test biochemical interactions between BAF, Wnt effectors, and chromatin in EC cells. For
the second Aim, we will use genetic lineage tracing to determine contributions of EMT-derived cells to distinct
SLV regions, define interactions between SLV mesenchyme sub-populations, characterize misexpressed
transcripts that may drive SLV disease progression, and describe a new mouse model of adult SLV disease of
potential utility in preclinical trials. Our proposed research uses novel technological and paradigmatic
approaches to pursue unresolved questions of SLV development and disease. These contributions will be
significant as they will shed light on the human genetics of SLV disease and inform regenerative medicine
approaches. Our newly identified transcripts associated with a BAV model may represent biomarkers for
disease diagnostics or therapeutic targets to prevent congenitally abnormal valves from becoming diseased.
项目概要:
半月瓣 (SLV) 疾病,包括二叶式主动脉瓣 (BAV),非常常见,但其
人们对遗传和发育起源知之甚少。同样,目前还不清楚如何扰乱
胚胎瓣膜发育进展为明显的瓣膜疾病。我们的长期目标是了解如何
基因调控驱动顺序发育过程,最终产生复杂的、有图案的瓣膜
以及这些过程如何在 SLV 疾病中出错。这些基因调控事件需要转录因子
与染色质化基因组相互作用,表明染色质调节因子是 SLV 的关键组成部分
发展网络。一个重要的事件是心内膜到间质的转化(EMT),
发生在瓣膜发育早期,填充心内膜垫 (EC),包括近端流出道
(pOFT) 为 SLV 提供组织的垫子。我们的目标是 1) 了解染色质如何重塑
在 EMT 过程中与细胞信号传导整合,2) 确定瓣膜破坏的机制
患病SLV的开发进展。我们的中心假设是心内膜 Brg1 相关因子
(BAF) 染色质重塑复合物与 Wnt 信号传导效应子相互作用,促进 pOFT EMT。作为一个
结果,当心内膜 Brg1 被删除时,OFT 间充质的亚型就会耗尽。如果没有这些细胞,尖峰
过度生长和融合会导致 SLV 增厚和畸形,包括 BAV。我们努力的理由
确定 EMT 期间染色质重塑的作用将有助于揭示 SLV 疾病的起源。更远,
我们的 SLV 疾病小鼠模型将有助于了解 SLV 疾病的细胞和分子进展
瓣膜疾病。我们的具体目标是: 1) 确定 BAF 复合体接口的分子网络
2) 确定缺乏心内膜的小鼠 SLV 疾病进展的机制
谱系 Brg1。为了实现第一个目标,我们将比较细胞和分子 pOFT 缺陷
未发表的破坏 Brg1 和 Wnt 信号传导的遗传模型。我们将应用革命性的新 TU 标签
技术来定义依赖于每个通路的动态心内膜转录组。使用新的细胞培养物
方法,我们将测试 EC 细胞中 BAF、Wnt 效应子和染色质之间的生化相互作用。为了
第二个目标,我们将使用遗传谱系追踪来确定 EMT 衍生细胞对不同细胞的贡献。
SLV 区域,定义 SLV 间充质亚群之间的相互作用,描述错误表达的特征
可能驱动 SLV 疾病进展的转录本,并描述了成人 SLV 疾病的新小鼠模型
在临床前试验中的潜在效用。我们提出的研究使用了新颖的技术和范式
解决 SLV 发展和疾病的未解决问题的方法。这些贡献将
意义重大,因为它们将揭示 SLV 疾病的人类遗传学并为再生医学提供信息
接近。我们新发现的与 BAV 模型相关的转录本可能代表以下生物标志物:
疾病诊断或治疗目标,以防止先天性异常瓣膜患病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 36.25万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Proteoglycan Regulation During Cardiac Valve Development and Homeostasis
心脏瓣膜发育和稳态过程中的蛋白多糖调节
- 批准号:
9302824 - 财政年份:2014
- 资助金额:
$ 36.25万 - 项目类别: